Chapter 1 Concepts of compiler

It is necessary for professional people in the field of com-
puter science who understand the principles, techniques and
writing of a simple compiler. Compiler writing includes pro-
gramming languages, machine architecture, language theory,
algorithms, as well as software engineering. In this chapter,
we introduce the compiler components, the environment and

concepts of a simple compiler.
1.1 The concept

Generally, there are two kinds of languages, one is high
level language, such as: FORTRAN, Pascal, C,ASL, C++
etc. , discussed in this book, it is called source language; the
other is low level language, it includes machine language and
assembly language, we call it target language.

Conceptually, source program is the program written in
a source C(high level) language. A target program is the pro-
gram written in a target (low level) language. Compiler is a
program which translates source program into an equivalent

target program. A compiler is shown in Fig. 1. 1.

Source

Program porge!

Program

Compiler

Fig. 1.1 A compiler

We shall use a simple example to explain the compiler.
The source program of a compiler is as follows.
I:=1,+Lx 2 (1. D
Target program: the output of compiler is an equivalent
machine code of its source program. It looks like these.
MOVF id3, R2
MULF #2.0, R2
MOVF id2, R1
ADDF R2, R1
MOVF R1, idl

(1.2

B G PR

YERIT BN L A BORVE, T % 9%
27 0 R 50 LA K g B TR SR g R R
HIES WA T BN REIE S
WHAR L R Bk M4 TR MR, &
A 9 R T WA RLER 4 L 3B AT R B A
TR 26 R

1.1 =

MIFRF (G FEAS) RIES M — L
REAGR. ERARBETRILRET WS
F R PP i e LS A B BIL AR T = R P IRt
iR R YUE S BT B MR RIE
BREFHERLS. BEEF (BES B
RIEF RN —FLRARL, BRE TR TE
GIREMBEEF K IATE R, L, i
BN R IR P — AT R 4L, T 4 1 7R
FREFH— N HERRLE.

B 11 — i

[E iR]

high level language: HHIES
source language: JRIES

low level language: {KKiES
machine language: ¥LERIE S
assembly language: IL4WIES
source program: JRFEF
target program : HiRFEF
compiler: ZiiEgs

Interpreter: fRBREF

2 HEi1% BRYEAEA

1.2 Analysis of the source program

Generally, the analysis of compiler includes six phases,
they are Lexical Analyzer, Syntax Analyzer, Semantic Ana-
lyzer, Intermediate Code Generator, Code Optimizer and
Code Generator. Every phase transforms the source program
from one form presentation to another, and during the trans-
formation it communicates with error handlers and symbol ta-
ble.

In lexical analysis, characters are grouped into tokens;
syntax analyzer changes a group of token into grammatical
phrases, it is often called parsing tree; in semantic analyzer,
grammatical phrases are checked by semantic errors and type
information are added; the intermediate code generator is a
program which is easy to produce program from semantic an-
alyzer and is easy to translate into the target program; code
optimization phase attempts to improve the intermediate
code; a intermediate code instructions are each translated into
a sequence of machine instructions, it is the task of code gen-

erator. The phases of compiler are shown by Fig. 1. 2.

Source Program

Lexical Analysis

Tokens

Syntax Analyzer

Parse tree

Semantic Analyzer

Semantic tree

Error

Symbol table
handlers |

manager

Intermediate Code
Generator

Intermediate y code

Code Optimizer

Intermediate

Code Generator

Target Program

Fig. 1.2 Phases of Compiler

1.2.1 Lexical analysis

Lexical analysis is also called scanner. It is a program

which recognizes patterns in text. Scanners may be hand

L2 R

BT EUT RSB FERN R
3O, AR P AR IR B AR LR =]
FORD 7 A e B AL AR ACAD . BR B vk o A
TR B9 I BAE 55 R A 2 R vk IR T IR
R FF AP R 7 A 2 el — b R X CHdiE
B —HiD) A ERS R T 8L
MriOHE 55 R & R AR P TR IR 4R 1R, R
PG R) — S5 R R R AT RE M 4K £k
KA s i o B R i 2 e 26 2L R 5 I
SEIE SRR IR P AU R IR AR A — Bl
8 T OU AL FIAE T A B AR B AR &
s A AR &5 AT AR T B
PRALEIEAL LU= R R B AR . BT
ARFLEBTEFSRMERENS
55k 58 HARBL D 6E .

[E iR]

Lexical Analysis: 83 4#7

Syntax Analyzer: &M

Semantic Analyzer: & 431
Intermediate Code Generator: H [A] {Q %
A

Code Optimizer: P ECHL 4L

Code Generator: HFRfCHG A4,

Phase: BBt

Tokens: F4F

Parsing tree: 1530t

Bl 1.2 Zias i 4

1.2.1 RAEDHHE
[EARIC]

Scanner: %%

Chapter 1 Concepts of compiler 3

written or be automatically generated by a lexical analysis
generator from descriptions of the patterns to be recognized.

The example is an assignment statement:

I:=1,+Lx* 2
Lexical analyzer can analysis it into a group of tokens:
MI7, = ST, S GL, 7 7,

Namely, they are the identifier, the assignment symbol,
the identifier, the plus, the identifier, the multiplication and
the digital.

Note: During the lexical analysis, the blanks which sepa-
rate the characters of these tokens would normally be elimi-

nated.
1.2.2 Syntax Analyzer

Syntax Analyzer is also called parser. It groups tokens
of the source program into grammatical phrases; what’s
more, it is also a program which determines if its input is
syntactically valid and determines its structure. Parsers may
be hand written or may be automatically generated by a par-
ser generator from descriptions of valid syntactical struc-
tures.

Usually, the grammatical phrases of the source program
are represented by a parsing tree. For example:

I:=1,+Lx* 2
the parsing tree of it is shown by Fig. 1. 3.

Assignment
/ Statelment \
Idenltiﬁer L Expression
I / + Expression
Expression i \
i Expression Expression
Identifier | |
I Identifier Number
0
L 2

Fig. 1.3 Parsing tree for I:= I,+ Lx* 2

From this parsing tree, we can see the grammatical
phrases include expressions and statements. The definition of

expression is as follows:

Assignment statement: WR{EEF]

Identifier: #RIRFF, AR K

Plus: 1%

Multiplication: 35

Digital: (5

Blank: =5#%
Wt XA RRAER AR . BEW

FEEMARERMAFIGS X 0 HAR

FOIEERTN

1.2.2 BEDWSE

TR 43 BT 28 2 W 1R 3 43 B 25 TR A
) B)) 4 RS [P o 9k A4 » B A T8
— AR ATIR Z B LW

BlnFEER T = L +L % 2,587
Bk o B — A R R S FE TR
Br 4% o i 2 H OB Bk 4T, B U5 B R
Al 1.3 FraiiEskm, Hed,1, L,L Ry
PRS2 B+, x TEBEWA R
kL ="IB BB .

MK 1.3 BiE s, RATEEE 18
LA PR IR B L4y - R AR R T

B 1.3 F#ikXI1:= L+ Lx 2 WiEEW

4 Hi1%x B#YEAEA

1. Any an identifier is an expression, such as I, L, I,

2. Any a digital is an expression, such as 2

3. If expressionl and expression2 are expressions,
then
expressionl * expression?2 is an expression, such as L * 2

expression]l + expression2 is an expression, such as I, + L * 2

On the other hand, we can similarly define statement re-

cursively. That is:

1. If identifierl is an identifier, and expression2 is
an expression, then
identifierl := expression2
2. If expressionl is an expression and expression2 is
an expression, so
While (expressionl) do statement2

If (expressionl), then statement2

Sometimes, we can compress the parsing tree into syntax
tree, where the operators appear as the interior nodes, and
the operands of an operator are the operator’s children,
shown in Fig. 1. 4. We shall discuss this in more detail in
Chapter 4.

1/: =\+
10/ *
T

Fig. 1.4 Syntax treefor I:= I,+ Lx* 2

1.2.3 Semantic Analyzer

The semantic analysis analyzes the parsing tree for se-
mantic errors, gathers information type and checks informa-
tion type. The syntax tree is used to identify if the operators
and operands are correct. In addition, many program langua-
ges need to report and correct an error type, this need to
store the name and type of variables and other objects in a
symbol table. The information type can be checked by means
of the symbol table. The output of the semantic analysis

phase is an annotated parsing tree, i. e. adding the type of

FKixMEXE 3 4%, 1. WIRFE
K. 2. FrRFBA, 30 RBAW
FARBRRERDEA.

FFHESL: 1. 8 WAE S A K
RAXARRFRAT. 2. @B
FFERERAT .

A I AR ORI LR R B 1. 4
PR . BREAFRIGET & 885 X
RREEZT R

[E iR]

Operator: B/
Operand: BE X2

F1l.4 B—FMERGEEMI:=1L+ Lx 2

1.2.3 BYXSH

8 (o M R 7R B T8 BRAY ¥ G o
T B BCE R IR, T T AL — BRIE
B

Chapter 1 Concepts of compiler 5

objects based on parsing tree, we name it as semantic tree.
This phase of semantic analysis is often combined with the
parser. Attribute grammars are used to describe the static se-
mantics of a program. For example, suppose we have de-
clared all identifiers as real type shown in Fig. 1. 5, and digit-
al 2 is an integer. Firstly, semantic analyzer gathers and
stores the type information of all identifiers and digitals in a
symbol table; then checks the type of them, it reveals that *
multiplies a real(L) by an integer(2); so the semantic analy-
zer creates a new node “real”; finally, it converts the digital 2

into a real type and builds a semantic tree.

I/::\+
(real) . _— \)
(real)
) - \

(real) (real)

2
(integer)

Fig. 1.5 Semantic tree

1.2.4 Intermediate Code Generator

When compiler analysis reaches the phase of Intermedi-
ate Code Generator, compiler has analyzed source language
into a series of tokens, and built a parse or syntax tree and
semantic tree, stored information type in symbol table and
generated the error information. In order to obtain machine
code of source program, some compilers generate an interme-
diate representation, it’s a program for an abstract machine.
The phase of creating the intermediate representation is called
intermediate code generator. The function of intermediate
code generator is for easy producing and translating the
source program into the target program.

There are several forms of intermediate code, the typical
one is “three-address code”, which is similar to the assembly

language. Three-address code is a sequence of instructions;

B X oA i Zh BE R A 2 TR W B RY
R R PR R B IE A R E AT
FRERS RSP, GIE L5 P15
M2 RBHORE, W5 Z BT« TIB R
BEXR R LR, —FNME; B
B S BB T R 2 B R R S
Bk A, T B A — BRIE SCIE B iR
S

E1.5 iBEXW

[(ERRIC]

Annotate: FF
Semantic tree: 15 X

1.2.4 FERBERKSE

H RS 2 7R 18 A AT R 2Bl R
8 T A B H AR RS 1 A R — FRAC S 2R
R~

FRREAE 2R ERRAER, REHEY
RS = on A . X ARSI LT
CHIET. ZnABHh =135 4.
TH=TTHABRE = TABESMHERF
W —F RES AL - EE/FMHA
BEX R A

6 Ei1%

1 ¥ AL A

each having at most three parts. We shall explain three-ad-
dress code and other intermediate exact representation in
Chapter 7.

The source program in (1. 1) can be written in three-ad-
dress code:
real(2)
temp2 := L * templ

templ = (1.3
temp3 := I, + temp2
1:= temp3

1.2.5 Code Optimizer

Intermediate code is not a faster-running code, so a code
optimizer can improve it. For example we can change the In-
termediate code (1. 3) into code optimization (1. 4).

templ := L % 2 1.4
1:= I,+ templ

This means that code optimizer can decrease the number
of instructions and increase the running speed of the target
program. There are many type of optimizers, these are cov-

ered in Chapter 8.
1.2.6 Code Generator

The function of this phase is to create target code. Tar-
get code means machine code or assembly code. The feature
of machine code is that it needs memory location for each of
the variables used by the program, and register of the assign-
ment of variables. The code of (1.4) might be translated into
a series of machine instructions, such as

MOVF L, R2
MULF #2.0, R2
MOVF 1,, Rl
ADDF R2, RI
MOVF R1, 1

The machine instructions mean

(1.5

(1) The F in above instructions (1. 5) means that the
digital is the type of floating point number.

(2) The function of MOV is to put the contents of the
address L into register 2.

(3) MUL signifies multiplication of R2 by 2. 0, and then
sends the result to R2. ADD presents adding R2 and R1

[E iR]

Assembly language: ILHiES
Three-address code: =JGH

1.2.5 Rk

IR R T A B Ak A o]
R,

Bilan=t 1. 3 AT f 4k AL =X 1. 4 f fE 4k
B,

1.2.6 KEBEK

ARA A B2 7 P RS G 2Rl | 4%
b B RS,

Wk 1.4 B L a =t 1.5
BiR .

(1) F AR 15 AR TR N T

RE,
(2) MOV ¥ stttk L i N A fik
TEFFA 2 H

(3) MUL B# &4 2 I EFRLL
2 MR R AFAA 2 H,
D #FRR2LE-NHE.

Chapter 1 Concepts of compiler 7

together, and then stores the result in R1.

(4) # means 2.0 is a constant.

Chapter 9 gives a detailed discussion of code generation.
In the above phase of compiler, there are two important parts
in compiler, they are symbol table and error table, the details

are as follows.
1.2.7 Error handlers

There are many error information found and need to be
corrected in the phase of compiler. For example, in lexical
phase some characters can’t be formed into any token of a
language. During syntax phase, there are some errors that do
not abide by any syntax structure rules of a language. In se-
mantic phase, some errors appear in incorrect type on both
sides of assignment. For example, on the one hand, the type
of variable in assignment is integer and on the other hand,
the constant is the type of float. It’s right in syntactic struc-
ture, but it is incorrect in semantic meaning. So we need the

error handlers in every phase of compiler.
1.2.8 Symbol table

After the analysis of lexical of compiler, source program
is turned into tokens and is prepared for being analyzed by
next phase. The point is that these tokens should be stored in
some place for use at any time. Where to store these tokens?

Symbol table is a data structure or a database. It has two
functions, the first one is the storage function, it stores the
information of token, such as the name, type and other char-
acter of identifier; the second function is to check or retrieve
this information, for example, in the phase of semantic anal-
ysis and intermediate code generation, it needs to check the
type of identifier and to generate proper operations.

In addition, the actions of storing some information in
symbol table and checking the information in some phase ex-
ist in all the phases of compiler. It is covered in detail in
Chapter 5.

1.3 Conclusion

This section further discusses some compiler concepts. It

is not necessary for all the compilers to consist of all six

1.2.7 HER

H B R U ¢ i TE 2 1 0 A Y A%
B B a0 BB BT T A B B R

Bl Un7E i 1k o> M B B, A R IE R —
SORRETE BRI FAF . TEIE TR,
BRILRAFEEE MMM R, 78X
oy, WS RIC s B U R AUR —
gL

1.2.8 HFExR

5 22 [F) R A B 2 3 20 AT O A B
Bt io A7 i Be o i i B, L& R —
2oy Hr A .

FERE—FEBEFHEMEE R
—FBEE. EAEWA L, — R
BHRE R Blnsa T, 884 75— 2k
BEMRREERIRE. HIU07ETE X0
B B K 25 A AR AR 2R B R — B

1.3 g

XA 3 B G ET RAA B
B, UL K f — B BL7E 4 B A% P BT R 1

8 Hi1% #YEAEA

phase, some compilers only have three phases. In this book,
we mainly introduce the common compiler structure (six pha-
ses) shown in Fig. 1. 6. Every phase of a compiler will be dis-
cussed in detail in the following chapters.

Compilers are not particularly difficult programs to un-
derstand once you are familiar with the structure of a compil-
er in a general way. The point is that not any of the phases of
a compiler is hard to understand; but, there are so many pha-
ses that you need to absorb and make sense of them. Table

1.1 is the description of each of the compiler phases.

Table 1.1 Description of compiler phases

Phase Description

Lexical analysis Turn the source file into a sequence of tokens

Analyze the phrase structure of the program
Syntax Analyzer .
and build a syntax tree

) Analyze the type of each expression and build
Semantic Analyzer)
a semantic tree

Intermediate Code A tie of source program and target program,
Generator produce the intermediate code

Code Optimizer Optimize the intermediate code

Code Generator Produce the target code

Source Program

(s

Lexical Analysis

Syntax Analyzer

Parse tree

Semantic Analyzer

Semantic tree

(Pass2)

Error

| Symbol Table
Handlers f

Manager

Intermediate Code
Generator

Intermediate

code

Code Optimizer (Pass3)
Intermediate y code
s

Target Program

Fig. 1.6 Phases of a compiler

EM.

Bl 1.6 %7 i 2 g R O B R 7S A B
B, B miFENBREHANAKRER®T
BEPTHTNHA. R 11 RIS RIFED
By Th REHEAT A T SR UL A

R1.1 HFRAREHA

Tk 23 1 B A6 R R IR AR P 0 i —
RINH IR &

TR T 2 FH SR 4 i 4% BT BB RGO
EEE BT B —BRE W

TS R TR R A B B B R 2k
BER.

AR R A T IR A B AR R P
Z i —AhRRIE K.

ARG A0 A 2 36F Hp 18] A QRS AL o B o 22

AORS A B R A B AR AR Y
BB

Bl 1.6 DY 4 i A8 0 4 AR

Chapter 1 Concepts of compiler 9

1.4 The pass of compiler

Compiler is a complex program. When a source program
is compiled, it often needs several passes to finish all phases
of compiler. So we name the distinct chunk pass. It is a part
of the compilation process and it communicates with one an-
other via temporary file. The typical structure is a four-pass
compiler, it is shown in Fig. 1. 6.

The first pass is preprocessor. Its first task is to strip
comments from the source code, such as {,} or begin, end.
Second task is to handle various housekeeping tasks with
which you don’t want to burden the compiler proper, for ex-
ample, the housekeeping is # include < global. h> in the
source program language C. The second pass is the heart of
compiler, it consist of lexical analysis, parser, semantic ana-
lyzer, and intermediate code generator. The input is source
language, and output is intermediate language. The third
pass is the optimizer, which improves the quality of the inter-
mediate code. Finally, the fourth pass, it translates the opti-
mizer code into real assembly language or some other form of
binary, executable code.

Note: There are many different passes of a compiler. Not
all compilers have four passes. Some have two passes, others
generate assembly language in the third pass, and some com-
piler only has one pass. Many compilers do not use prepro-
cessors, or have intermediate language, but generate the ma-

chine code directly.
1.5 Compiler example 1

So far we have described all the compiler phases and
some theory knowledge about it. But, what is a compiler
program? How to build a compiler from a simple expression?
We give some parts of a typical compiler program and explain
the compiler phase that consists of lexical analysis (Lex),
parser analyzer (Yacc) and code generation (ANSI C code
generator).

Lex and Yacc can generate program fragments that solve

the task of reading the source program and discovering its

1.4 Zuiasiti

BT T 4 47) 9 198 i 45 40 R 1R D BE 45
Wor RHLER K RELS ., — D RE
Y 4 13 45 1A 2R 0 T RE R 4R B Ok H 4R
oK o 451 0 2 1 A 31 A 3 2, U R
G g — 3 45 1 H 22 088 31 48 B 4 R A (FL 9
3 | = 38 1 038 4 0 2 D) . — Y
2 B A Rl A — i 45 4 BN TR P AR
B B AR RS T 22 36 A9 2 138 45 U 38 3 25 38
196 52 A% B B A 9 B4 55 7 A B AR AR
T 5] 40 1038 5 % » B — 3l 4 8 HE AT T
Ab B, 58 38 AT I vk AT TR A T R
SCor A A o AR A A 3 =38 2 1] 4K
R4 » T 565 1 3 41 4 U0 A o i) £ ™ A
B, R0 2o #2 4 w] L2 79 i
B =3 Y 2 1 A R SE A

S U 2 AR S LI 1.6

L5 KBl 1—SmiESR Ry

A5 i Jeremy Bennett 3 4L —
A9 PR FE P S) AR A 1A 3k 4 BT A
B At 2% LA AR A 8% » 4 152 3 X 4
BHRA—T2EMIAA,

10 FBE I LY PN

structure.

Lex is well suited for segmenting input in preparation for
a parsing routine and helps write programs whose control
flow is directed by instances of regular expressions in the in-
put stream. Lex table made up of regular expressions and
corresponding program fragments is translated to a program
that reads an input stream, copy it to an output stream and
partition the input into strings that match the given expres-
sions. What’s more, Lex can generate the recognition of the
expressions and strings to corresponding program fragments
that are executed.

The Yacc specifies the structures of his input and recog-
nize each structure. Yacc changes such a specification into a
subroutine that handles the input process; usually, it uses
the subroutine to make it convenient and appropriate to han-
dle the flow of control.

Note: The following compiler code is provided by Jeremy
Bennett and he has permitted to add his code to this book.
We sincerely thank him for his kind support. If you wish to
read the complete compiler source code, please access the Jer-

emy Bennett’s website at http://www. jeremybennett. com/.
1.5.1 The lexical analysis

Let us first discuss the concept of token. Token is an in-
put symbol, which is used both for digitals and identifiers; so
the tokens are made up of a sequence of characters in the
range ‘0-9”, ‘a-z’, ‘A-Z’. The following lexical program is
only a part of the whole lexical analysis. It starts from input
system, getting characters from standard input, and then iso-
lating tokens. The detailed lexical analysis is as follows.

It starts from the definition of syntax analyzer, which is
to obtain the definition of type ctype. h and of the routine

parse program.

scanner. ¢ (LEX scanner for the vc compiler)

Wkt gs — Lex, BB A G B
FIR— AR, Wk EnfFesR
REHF BRI AR A AT R .

BRI T #% — Yace, 2 3k 43 #r 840
MITEEEE Y, I ENTRIE LR R, B
HE— W o 1T O &

1.5.1 AEDH=E

AT BB RIS 0~9 HF
M 26 DNKR/NG FBE, Bk ot v B —
Y o

— Bk UL, AR R B i TR
A DR 0 5 T SR R R BT RE A R)
H ke, 8 FHR 23 O YRR P A RE A8 R

BrL, % 38 35 50 7 A% Lex, BB 7 4
scanner. ¢ %ﬁ%iﬁﬁﬁgiﬂ%ﬁﬁﬁo

Chapter 1 Coneepts of compiler 1

i ra R T E R KR LR
VAN S R I S D
mkname, mkval Fl mktext F 3|5 F
BN B 43 BT R 8 O 1F O) W I)
(514 W 8 7)) R SE IR DT R

THOL 0 [, MBTHE 2.

B 1 KEERIEA,

B 2. EHEEHE,

B0 3: FrHERAY .,

B 4. FFHEEUE.

B 5. FAESCRFATER

12 o1 F A Ade

TELL 6. W7 i R AETE A

B 7. AIWRE R R

B0 8. AW RE —ATENEA].

BB 9. FIWHR [EE 4],

B 10 HIB Ak SEHE AT IE AT

B 11 AW A FiE A IF,

B0 12 AW 4457 THEN,

B 13 HIWr 41415 7) ELSE,

TEH 14 HW FI,

&8 15 HIWifE A iE4R WHILE,

1B 16 FIWT{E 3 iEA] DO,

Chapter 1 Coneepts of compiler 13

B 17 H W DONE,

TEOL 18 HIWr VAR &,

B0 19 FIBT BANFFS .

B 20. 45K,

MR A TR AR B ERA T .

WU 5 e 18 DL A9 15 B A7 B

24 B B (8RR (8] 2] B — SR
HPRES , FRAR SR AT

14 £t F BB EAdeE

B b3 2% Ffr 1% DL AT » P4 i B 1) BB A
HTR

1.5.2 The Parser 1.5.2 EES e
In the parser phase no code is generated, it just analyze T A b Ay 22 R A A AR B A

the input tokens, i. e. parse the input. Each subroutine cor- TERIEA M B R MBS,
responds to the left of one sentence and in the original gram-
mar that bears the same name, and it must match the gram-
mar exactly. The following parser part includes the routine to

make an IF statement, a WHILE loop and expression node.

parser. ¢ (YACC parser for the vc compiler)

Chapter 1 Coneepts of compiler 15

XESMR AT ENE R A
ELSE i 4kt A “do_if O”; B —F 2 A
ELSE # 4 41& 4] “do_test ()”, TAC_
LABEL 2&4r X A A 1484,

Zei1 IR “ do_if O B 46 1418) I 5 1k

TR .

7o il 2 do_test)7 {y 5% 14 15] 1 i

16 £t F BB EAdeE

Ze i R AR 3 i) “ do_while”) 1
R .

e RFRRAXMEESTRF .

Ze il AR FF A AT R AL BE A
BT

Chapter 1 Coneepts of compiler 17

1.5.3 Code generation

Moving on to the code generation, the goal of this phase
is to build a compiler given that the programs in the phase of
parser have been strictly recognized without any error, here
the error means that the input is an illegal sentence in the
grammar. However, before generating code, first you need
to build the bar-bones recognizer.

For example:

ai=bopec

We need create some temporary variables and maintain
internally by the compiler. The step of generating Code is as
follows. First, create a mechanism for allocating tempora-
ries. In fact, the temporaries should be recycled, that is they
should be reused after they are no longer needed in the cur-
rent subexpression. Second, determine the name of the tem-
porary that uses arguments and return values. So, this sec-
tion of code generator consists of generating code for a binary
operator, generating code for a copy instruction, generating
code for an instruction that loads the argument into a regis-
ter, and then write it onto the new stack frame, including the

standard call sequence and the standard return sequence.

cg. ¢ (ANSI C code generator for the vc compiler)

1.5.3 RBEMF

AR AS EEER T Rk
a:=bop c UL MK 2.

RBA LT 1. BE—A e
MEAFX, Hx%F X &EE M,
2. BEFX WAL . L THBELESHEN

BREERIE.
S) A SNiE SRE AN e 95 T

BEHEH A a4 AU A A R) S
CEBAFiE, 2B ERERERED.

18 £t F BB EAdeE

RTHEMEREX a:=bop e
B, BRERBEWANFFG. B NHFHES
XAl ke B R . HR . EREE
RIS .

ARREEARAGGE:=Db), &
Sk b FAFFRF . RIFEFIRE, 18
7~ a WIE AT

A R TG 2 A e R VB B0 AR DA T A
SE (o FH A~ 25 77 4%

Chapter 1 Coneepts of compiler 19

AR ARG Z B iU, B B E
BATFAFEAT . RIFHZ AR TR
R, e I AR SR AE A LR B2 B

A R A FARTE

20 £t F BB EAdeE

AR EARBZR, BB S FRE
FLH5 8 2518 TUAT 17 4 A 27 47 2% 48 € A5
#). F R_RET k& 727 AR [0 # ik,
8 FH3R 5] 918 F R_RES K277, 767
AP EE % & “next_arg” T &,

BB A RGR B E A,
1.6 Compiler example 2 for using Flex tool 1.6 2B 2——{#FH T.H Flex
The steps of running the Flex tool are: BT EA TR Flex ¥ UT

1. Download the source code of Flex tool from the 8 AN,

