Schemes and Coherent

Sheaves

1.1 Presheaves and Sheaves

Let X be a topological space. A presheaf F of sets on X consists of the following
data:

(a) For every nonempty open subset U of X, we have a set F(U) whose elements
are called sections of F over U.

(b) For every inclusion V' C U of nonempty open subsets of X, we have a map
puv : F(U) — F(V), called the restriction.

These data satisfy

(i) puv = idr@).

(ii) if W C V C U are open subsets of X, then pyw = pywpuv.

For any section s € F(U) and V' C U, we often denote pyy (s) by s|y. Elements
in F(U) are often denoted by (s,U) in order to make the open set U explicit in
the notation. We make the convention that F(@)={0} for any presheaf of sets F.

Define the category of open subsets of X so that its objects are nonempty open

subsets of X, and for any two objects U and V, define

o iV ¢ U,

Hom(V.U/) _{ (VU ifVCU.

Then a presheaf F of sets on X is just a contravariant functor from the category
of open subsets of X to the category of sets.

Similarly we define a presheaf F of Abelian groups (resp. rings) on X to be a
contravariant functor F from the category of open subsets of X to the category
of Abelian groups (resp. rings). For any presheaf of Abelian groups or rings, we
make the convention that F (@) = {0}.
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Here are some examples of presheaves:

1. Let X be a topological space and A an Abelian group. For every nonempty
open subset U of X, define F(U) = A, and for every inclusion V' C U of nonempty
open subsets, define pyy = ids. Then F is a presheaf of Abelian groups, called
the constant presheaf associated to A.

2. Let X be a topological space. For every open subset U of X, define C(U) to
be the ring of complex valued continuous functions on U, and for every inclusion
V' C U of nonempty open subsets, define pyy : C(U) — C(V) to be the restriction
of functions. Then C is a presheaf of rings.

3. Let 7 : X’ — X be a continuous map of topological spaces. For every
nonempty open subset U of X, define S(U) to be the set of continuous sections of

m over U:
S(U)={s:U — 7 }(U)|rs = id, and s is continuous},

and for every inclusion V' C U of nonempty open subsets, define pyy : S(U) —

S(V) to be the restriction of sections. Then § is a presheaf of sets.

We say a presheaf F of sets (resp. Abelian groups, resp. rings) is a sheaf if it
satisfies the following conditions:

(i) Let s,t € F(U) be two sections. If there exists an open covering {U; }ier of
U such that s|y, = |y, for any ¢, then s = t.

(ii) Suppose {U; }ier is an open covering of U and s; € F(U;) are some sections

satisfying s;
such that s

vinU; = Sjlu.nu, for any i, j € I. Then there exists a section s € F(U)

u, = s; for any i € I. (By (i), such s is unique.)
Note that a presheaf F of Abelian groups is a sheaf if and only if for any open

covering {U, };cr of any open subset U, the sequence
0—FU) = [[FU:) - [] Fwinuy)
icl ijel
is exact, where the second arrow is
FU) = [[FW), s = (slu,)
i€l
and the third arrow is

[T7w) = I FWinU;). (s0) = (silvinv, = silvinw;)-

i€l i,5€1
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The last two examples of presheaves given above are sheaves.

A direct set is a partially ordered set (I, <) such that for any i,5 € I, there
exists a k € I such that 4,5 < k. A direct system (A;, ¢;j)icr of sets consists of
a family of sets A; (i € I) and maps ¢;; : A; — A; for pairs ¢ < j such that
¢si = ida, and @jrdi; = ¢pi whenever ¢ < j < k. For any z; € A; and z; € A;,
we say x; is equivalent to x; if there exists a k > 4, j such that ¢ (z;) = ¢jr(x;).
This defines an equivalence relation on the disjoint union [, A; of A; (i € I). The
direct limat dir. lim; A; of (A;, ¢i5)icr is defined to be the set of equivalence classes.

Let X be a topological space and P a point in X. For any two neighborhoods
U and V of P, wesay V < U if U C V. Then the family of neighborhoods of P
becomes a direct set with respect to this order. For any presheaf F on X, define
the stalk Fp of F at P by

Fp =dir. lim F(U),
PeU

where the direct limit is taken over the family of neighborhoods of P. So elements
of Fp can be represented by sections of F over some neighborhoods of P. Two
sections s € F(U) and t € F(V) define the same element in Fp if and only if
there exists a neighborhood W of P such that W C U NV and s|w = t|w. For
any neighborhood U of P, we have a canonical map F(U) — Fp. The image of a
section s € F(U) in Fp is called the germ of s at P and is denoted by sp.

Let F and G be presheaves of Abelian groups on X. A morphism of presheaves
¢ : F — G consists of a homomorphism of Abelian groups ¢(U) : F(U) — G(U)
for every open subset U such that for every inclusion V' C U of open subsets, the
following diagram commutes:

Fu)y Y gw)

puv | L puv

Fv) "X gw).
For any point P € X, ¢ induces a homomorphism on stalks ¢p : Fp — Gp. If
we regard presheaves of Abelian groups as contravariant functors from the cate-
gory of open subsets on X to the category of Abelian groups, then a morphism
of presheaves is just a natural transformation. Similarly we can define morphisms
between presheaves of sets or rings. For any presheaf F, we have the identity

morphism idg. Given two morphisms of presheaves ¢ : F — G and ¢ : G — H,
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we can define their composite ¥¢ : F — H in the obvious way. We thus get the
category of presheaves. A morphism of presheaves ¢ : F — G is called an isomor-
phism if it has a two-sided inverse, that is, there exists a morphism of presheaves
¥ : G — F such that ¥¢ = idr and ¢y = idg. This is equivalent to saying
that ¢(U) : F(U) — G(U) is an isomorphism for every open subset U. We define
morphisms of sheaves as morphisms of presheaves. We thus get the category of

sheaves which is a full subcategory of the category of presheaves.

Proposition 1.1.1 Let ¢ : F — G be a morphism of sheaves on a topological
space X. Then ¢ is an isomorphism if and only if the induced map on stalks

¢p : Fp — Gp is an isomorphism for every P € X.

«

Proof The “ only if 7 part is obvious. Let’s prove the “ if ” part. Suppose
¢p : Fp — Gp is bijective for every P € X. We need to show ¢(U) : F(U) — G(U)
is bijective for every open subset U of X.

Let s, € F(U) be two sections such that ¢(s) = ¢(s’). Then ¢p(sp) =
¢p(sp) for any P € U. Since ¢p is injective, we have sp = s». So there exists a
neighborhood Up of P contained in U such that s|y, = §'|y,. Note that {Up}pecy
is an open covering of U. Since F is a sheaf, we must have s = s’. So ¢(U) is
injective.

Let (t,U) be a section in G(U). For any P € U, since ¢p : Fp — Gp is
surjective, we may find sp € Fp such that ¢p(sp) = tp. We may assume sp is
the germ of a section (s,Up) € F(Up) for some neighborhood Up of P. Note that
@(s,Up) and (t,U) have the same germ at P. Choosing Up sufficiently small, we
may assume Up C U and ¢(s,Up) = (t,U)|u,. Then for any two points P,Q € U,
we have

o(s,UpP)|upnug = (4, U)lupnug = 0(s,UQ)urnug -
By the injectivity of ¢(Up N Ug) that we have proved above, we must have
(5,Up)|lupnvg = (5,UQ)|lupnu,- Note that {Up}pey form an open covering of
U. Since F is a sheaf, we may find a section (s,U) € F(U) such that (s,U)|y, =
(s,Up) for any P € U. We have (¢(s,U))|u, = (t,U)|up. Since G is a sheaf, we
must have ¢(s,U) = (t,U). So ¢(U) is surjective.

Before going on, we introduce some concepts from the theory of categories.
Let C be a category. A morphism f : A — B in C is called a monomorphism

or injective if for any two morphisms «, 5 : C' — A satisfying fa = f3, we have
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« = (. An epimorphism is defined similarly by reversing the directions of arrows.
More precisely, f : A — B is called an epimorphism or surjective if for any two
morphisms «, 3 : B — C satisfying af = gf, we have o = 3. If a morphism is
both injective and surjective, we say it is bijective. An isomorphism is a morphism
with a two-sided inverse. Any isomorphism is bijective. But a bijective morphism
may not be an isomorphism.

Let A; (¢ € I) be a family of objects in C. The direct product of A; (i € I) is
an object []

called projections with the following universal property: For any object C' and any

ser Ai together with a family of morphisms p; : [[,c; 4i — A; (i € I)
family of morphisms f; : C' — A; (i € I), there exists one and only one morphism
[ :C — [l;c; Ai such that p;f = f; for any 7. If the direct product of A; (i € I)
exists, it is unique up to unique isomorphism, that is, any two direct product of
A; (i € I) are isomorphic and the isomorphism between them is unique.

The direct sum of A; (i € I) is defined similarly as above by reversing the
directions of arrows. More precisely, the direct sum of A; (i € I) is an object
@icrA; together with a family of morphisms k; : A; — @icrA; (i € I) with
the following universal property: For any object C' and any family of morphisms
fi + A; = C (i € I), there exists one and only one morphism f : ®;crA; — C such
that fk; = f; for any 4. If the direct product of A; (i € I) exists, it is unique up
to unique isomorphism.

Let (I, <) be a directed set. A direct system (A;, ¢i;)icr consists of a family of
objects A; (i € I) and morphisms ¢;; : A; — A; for pairs ¢ < j such that ¢;; = ida,
for any ¢ and ¢;x¢i; = @i Whenever i < j < k. The direct limit of a direct system
(Ai, ¢i5) is an object dir.lim; A; together with morphisms ¢; : A; — dir.lim; A;
(1 € I) satisfying ¢j¢;; = ¢; whenever ¢ < j and having the following universal
property: For any object C' and any morphisms ¢; : A; — C (i € I) satisfying
Yjdi; = ¥; (i < j), there exists a unique morphism 1 : dir. lim; A; — C such that
P¢; = 1p; for any 4. If the direct limit exists, it is unique up to unique isomorphism.
Let (AL, ¢i;)icr be another direct system. A morphism from (A;, ¢i;) to (Af, ¢ij)
is a family of morphisms u; : A; — A} (i € I) such that for any ¢ < j, the following

diagram commutes:

A B oA
oal Lo
A AL

It induces a morphism dir. lim; u; : dir.lim; A; — dir. lim; A}.
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An inverse system (A;, ¢ji)ier consists of a family of objects A; (i € I) and
morphisms ¢;; : A; — A; for pairs ¢ < j such that ¢;; = id4, for any ¢ and
®jidr; = ¢dr; whenever i < j < k. The inverse limit of an inverse system (A;, ¢;;)
is an object inv.lim; A; together with morphisms ¢; : inv.lim; 4, — A; (i € I)
satisfying ¢;;¢; = ¢; whenever ¢ < j and having the following universal property:
For any object C and any morphisms ¢; : C — A; (i € I) satisfying ¢;;1; = ¢
(i < j), there exists a unique morphism ¢ : C' — inv.lim; A; such that ¢;1 = ¢,
for any i. A morphism from an inverse system (A;, ¢;j;)icr to an inverse system
(A}, @ji)ier is a family of morphisms w; : A; — A} (i € I) such that for any i < j,

the following diagram commutes:

w
A M
¢5i | 1 ¢is
A B AL

It induces a morphism inv. lim; u; : inv. lim; 4, — inv. lim; AL, If (A;, ¢ji)ier is an
inverse system of sets, then inv.lim; A; is the subset of [[, A; consisting of those

elements (x;) € []; Ai satisfying ¢;i(z;) = x; for any i < j.

A category C is called an additive category if for any objects A, B and C' in C,
the direct product of A and B exists, Hom(A, B) is an Abelian group, and the
map

Hom(A, B) x Hom(B,C) — Hom(A4, C), (f,g9) — gf

is a homomorphism. We call 0 € Hom(A, B) the zero morphism.

Proposition 1.1.2 Let C be an additive category and let A and B be two objects
in C.

(i) Let p1 : Ax B — A and py : A x B — B be the projections. Define
ki1 : A — A x B to be the unique morphism satisfying p1k1 = id4 and pak; = 0,
and define ky : B — A X B to be the unique morphism satisfying pi1k2 = 0 and
poko = idp. Then we have kyp; + kopo = idaxB-

(ii) Suppose we have an object P and morphisms p; : P — A, ps : P — B,
ki :A— P, ky: B— P such that

piki =ida,
pake =idp,
k1p1 + kopa =idp.
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Then P together with the morphisms p; : P — A and py : P — B is the direct
product of A and B, P together with the morphisms k1 : A — P and ko : B — P
is the direct sum of A and B.

Proof (i) It is easy to verify that

p1(k1p1 + kap2) =p1idax s,
p2(k1p1 + kop2) =po2idax B.

By the universal property of the direct product, we have k1p; + kaps = idaxp.
(ii) We have

prke =p1idpky = p1(kip1 + kap2)ks
= (p1k1)(p1k2) + (p1k2)(p2k2) = pika + p1keo
:2p1k2.

So p1ks = 0. Similarly p2k; = 0.

Let’s prove (P, k1, ko) is the direct sum of A and B and leave to the reader to
prove (P, p1,p2) is the direct product of A and B. Given any object C' and any
morphisms f; : A — C and fy : B — C, define f = fip1 + fop2. It is easy to verify
that fk1 = f1 and fky = fo. If f' : P — C is a morphism such that f'k; = f1
and f'ko = fo, then we have

f'=flidp = f'(k1p1 + kapo)
=(f'k1)p1 + (f'k2)p2 = fip1 + fape.

This proves (P, k1, k2) has the required universal property.

Let C be an additive category and f : A — B a morphism in C. We say a
monomorphism K — A is the kernel of f if the composite K — A — B is 0, and
for any morphism K’ — A such that the composite K’ — A — B is 0, there exists

a unique morphism K’ — K such that the diagram

K/
AN
K — A

commutes. We often denote K by kerf and call it the kernel of f. Similarly we

define the cokernel of f to be an epimorphism B — C such that the composite



sl

Algebraic Geometry

A — B — C is 0, and for any morphism B — C’ such that the composite

A — B — (' is 0, there exists a unique morphism C' — C” such that the diagram

B — C
N
C/

commutes. We often denote C by cokerf and call it the cokernel of f. We define
the image of f to be the kernel of the cokernel of f, and define the coimage of f to
be the cokernel of the kernel of f. There exists a canonical morphism coimf — imf
from the coimage to the image such that the diagram

A — B

! T

coimf — imf

commutes. For example, when f : A — B is a morphism in the category of Abelian

groups, then

kerf={a € A|f(a) = 0},
imf={be B|b= f(a) for some a € A},
cokerf = B/imf,
coimf = A/kerf,

and the canonical morphism from the coimage to the image is the canonical ho-
momorphism A/kerf — imf (which is an isomorphism).

Let C be an additive category. A zero object 0 in C is an object such that
Hom(0,0) = {0}. This is equivalent to saying that the identity morphism of 0 is
equal to the zero morphism. For any object X in C, we have Hom(X,0) = {0}
and Hom(0, X) = {0}. Zero objects in C are isomorphic to each other.

An Abelian category C is an additive category with zero objects such that for
any morphism f in C, the kernel and cokernel of f exist (and hence the image and
coimage of f exist), and the canonical morphism coimf — imf is an isomorphism.

In an Abelian category, a bijective morphism is an isomorphism. Indeed, if
f : A — B is injective, then the kernel of f is 0 — A and the coimage of f
isidga : A — A. If f: A — B is surjective, then the cokernel of f is B — 0
and the image of f isidp : B — B. If f : A — B is bijective, then the canonical
morphism coimf — imf is just f : A — B. Since coimf — imf is an isomorphism,

f: A — B is an isomorphism.
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Suppose u : A — B is a monomorphism in an Abelian category. We often say
A is a sub-object of B. Let B — C be the cokernel of u. We call C' the quotient of
B by A and denote it by B/A.
In an Abelian category, a sequence of morphisms
AL BSCO
is called ezact if vu = 0 and the canonical morphism coimu — kerv is an isomor-
phism. An exact sequence of the form

0—-A—B—-C—0

is called a short exact sequence. This short exact sequence is called split if it is
isomorphic to
0—-A—ApC —C —0,

where A - A@ C and A® C = A x C — C are the canonical morphisms.

Proposition 1.1.3 Let
0— A 248 4,-0

be a short exact sequence in an Abelian category. The following conditions are
equivalent.

(i) The above short exact sequence is split.

(ii) There exists a morphism p; : A — A; such that p1i; = ida,.

(iii) There exists a morphism iy : A2 — A such that pais = ida,.

Proof (i)=(ii) and (i)= (iii) are obvious.
(ii)=-(i) Consider the morphism idg —i1p; : A — A. We have
(ida —d1p1)in = i1 — d1(p1i1) = 0.

Since As is the cokernel of i1 : A7 — A, there exists a morphism is : A5 — A so
that idg — 41p1 = i2pa. Our assertion then follows from Proposition 1.1.2 (ii).

Similarly one can prove (iii)=-(i).

Let F: C — D be a covariant functor between Abelian categories. We say F

is additive if for any objects A and B in C, the map

Hom(A, B) — Hom(F(A), F(B))
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is a homomorphism. We then have
F(A® B) @ F(A) @ F(B).

Indeed, keeping the notations in Proposition 1.1.2 (i) and applying F to the equal-

ities there, we get

F(p1)F(k1)=idp(a),
F(p2)F(k2) =idp(p),
F(k1)F(p1) + F(k2)F(p2) =idpaeB)-
So by Proposition 1.1.2 (ii), (F(A @ B), F(k1), F(k2)) is the direct sum of F(A)

and F(B). Hence if
0—-A—-B—-C—0

is a split short exact sequence, then
0—FA) — FB)—F(C)—0

is also a split short exact sequence.
Note that the category of Abelian groups is an Abelian category. We leave to

the reader to prove the following proposition:

Proposition 1.1.4 Let X be a topological space. Then the category of presheaves
of Abelian groups on X is an Abelian category. Let ¢ : F — G be a morphism of
presheaves of Abelian groups. Then the kernel, cokernel and image of ¢ are the

presheaves defined by

(kerg)(U) =ker(¢(U) : F(U) — G(U)),
(coker¢)(U)—coker(¢(U) FU)—g)),
(ime) (V) =im(o(U) : F(U) — G(U))

for every open subset U of X. The stalks of these presheaves at a point P € X

are given by

(kerg)p =ker(¢pp : Fp — Gp),
(coker¢)) p = coker(¢p : Fp — Gp),
(img)p =im(¢p : Fp — Gp).





