
Schemes and Coherent

Sheaves

1.1 Presheaves and Sheaves

Let X be a topological space. A presheaf F of sets on X consists of the following

data:

(a) For every nonempty open subset U ofX , we have a set F(U) whose elements

are called sections of F over U .

(b) For every inclusion V ⊂ U of nonempty open subsets of X , we have a map

ρUV : F(U)→ F(V ), called the restriction.

These data satisfy

(i) ρUU = idF(U).

(ii) if W ⊂ V ⊂ U are open subsets of X , then ρUW = ρVWρUV .

For any section s ∈ F(U) and V ⊂ U , we often denote ρUV (s) by s|V . Elements

in F(U) are often denoted by (s, U) in order to make the open set U explicit in

the notation. We make the convention thatF(∅)={0} for any presheaf of sets F .

Define the category of open subsets of X so that its objects are nonempty open

subsets of X , and for any two objects U and V , define

Hom(V, U) =

{
∅ ifV �⊂ U,

{V ↪→ U} if V ⊂ U.
Then a presheaf F of sets on X is just a contravariant functor from the category

of open subsets of X to the category of sets.

Similarly we define a presheaf F of Abelian groups (resp. rings) on X to be a

contravariant functor F from the category of open subsets of X to the category

of Abelian groups (resp. rings). For any presheaf of Abelian groups or rings, we

make the convention that F(∅) = {0}.
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Here are some examples of presheaves:

1. Let X be a topological space and A an Abelian group. For every nonempty

open subset U of X , define F(U) = A, and for every inclusion V ⊂ U of nonempty

open subsets, define ρUV = idA. Then F is a presheaf of Abelian groups, called

the constant presheaf associated to A.

2. Let X be a topological space. For every open subset U of X , define C(U) to

be the ring of complex valued continuous functions on U , and for every inclusion

V ⊂ U of nonempty open subsets, define ρUV : C(U)→ C(V ) to be the restriction

of functions. Then C is a presheaf of rings.

3. Let π : X ′ → X be a continuous map of topological spaces. For every

nonempty open subset U of X , define S(U) to be the set of continuous sections of

π over U :

S(U) = {s : U → π−1(U)|πs = id, and s is continuous},

and for every inclusion V ⊂ U of nonempty open subsets, define ρUV : S(U) →
S(V ) to be the restriction of sections. Then S is a presheaf of sets.

We say a presheaf F of sets (resp. Abelian groups, resp. rings) is a sheaf if it

satisfies the following conditions:

(i) Let s, t ∈ F(U) be two sections. If there exists an open covering {Ui}i∈I of

U such that s|Ui = t|Ui for any i, then s = t.

(ii) Suppose {Ui}i∈I is an open covering of U and si ∈ F(Ui) are some sections

satisfying si|Ui∩Uj = sj |Ui∩Uj for any i, j ∈ I. Then there exists a section s ∈ F(U)

such that s|Ui = si for any i ∈ I. (By (i), such s is unique.)

Note that a presheaf F of Abelian groups is a sheaf if and only if for any open

covering {Ui}i∈I of any open subset U , the sequence

0→ F(U)→
∏
i∈I
F(Ui)→

∏
i,j∈I
F(Ui ∩ Uj)

is exact, where the second arrow is

F(U)→
∏
i∈I
F(Ui), s �→ (s|Ui)

and the third arrow is∏
i∈I
F(Ui)→

∏
i,j∈I
F(Ui ∩ Uj), (si) �→ (sj |Ui∩Uj − si|Ui∩Uj ).
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The last two examples of presheaves given above are sheaves.

A direct set is a partially ordered set (I,�) such that for any i, j ∈ I, there

exists a k ∈ I such that i, j � k. A direct system (Ai, φij)i∈I of sets consists of

a family of sets Ai (i ∈ I) and maps φij : Ai → Aj for pairs i � j such that

φii = idAi and φjkφij = φik whenever i � j � k. For any xi ∈ Ai and xj ∈ Aj ,
we say xi is equivalent to xj if there exists a k � i, j such that φik(xi) = φjk(xj).

This defines an equivalence relation on the disjoint union
∐
iAi of Ai (i ∈ I). The

direct limit dir. limiAi of (Ai, φij)i∈I is defined to be the set of equivalence classes.

Let X be a topological space and P a point in X . For any two neighborhoods

U and V of P , we say V � U if U ⊂ V . Then the family of neighborhoods of P

becomes a direct set with respect to this order. For any presheaf F on X , define

the stalk FP of F at P by

FP = dir. lim
P∈U
F(U),

where the direct limit is taken over the family of neighborhoods of P . So elements

of FP can be represented by sections of F over some neighborhoods of P . Two

sections s ∈ F(U) and t ∈ F(V ) define the same element in FP if and only if

there exists a neighborhood W of P such that W ⊂ U ∩ V and s|W = t|W . For

any neighborhood U of P , we have a canonical map F(U)→ FP . The image of a

section s ∈ F(U) in FP is called the germ of s at P and is denoted by sP .

Let F and G be presheaves of Abelian groups on X . A morphism of presheaves

φ : F → G consists of a homomorphism of Abelian groups φ(U) : F(U) → G(U)

for every open subset U such that for every inclusion V ⊂ U of open subsets, the

following diagram commutes:

F(U)
φ(U)→ G(U)

ρUV ↓ ↓ ρUV
F(V )

φ(V )→ G(V ).

For any point P ∈ X , φ induces a homomorphism on stalks φP : FP → GP . If

we regard presheaves of Abelian groups as contravariant functors from the cate-

gory of open subsets on X to the category of Abelian groups, then a morphism

of presheaves is just a natural transformation. Similarly we can define morphisms

between presheaves of sets or rings. For any presheaf F , we have the identity

morphism idF . Given two morphisms of presheaves φ : F → G and ψ : G → H,
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we can define their composite ψφ : F → H in the obvious way. We thus get the

category of presheaves. A morphism of presheaves φ : F → G is called an isomor-

phism if it has a two-sided inverse, that is, there exists a morphism of presheaves

ψ : G → F such that ψφ = idF and φψ = idG . This is equivalent to saying

that φ(U) : F(U)→ G(U) is an isomorphism for every open subset U . We define

morphisms of sheaves as morphisms of presheaves. We thus get the category of

sheaves which is a full subcategory of the category of presheaves.

Proposition 1.1.1 Let φ : F → G be a morphism of sheaves on a topological

space X . Then φ is an isomorphism if and only if the induced map on stalks

φP : FP → GP is an isomorphism for every P ∈ X .

Proof The “ only if ” part is obvious. Let’s prove the “ if ” part. Suppose

φP : FP → GP is bijective for every P ∈ X . We need to show φ(U) : F(U)→ G(U)

is bijective for every open subset U of X .

Let s, s′ ∈ F(U) be two sections such that φ(s) = φ(s′). Then φP (sP ) =

φP (s′P ) for any P ∈ U . Since φP is injective, we have sP = s′P . So there exists a

neighborhood UP of P contained in U such that s|UP = s′|UP . Note that {UP }P∈U
is an open covering of U . Since F is a sheaf, we must have s = s′. So φ(U) is

injective.

Let (t, U) be a section in G(U). For any P ∈ U , since φP : FP → GP is

surjective, we may find sP ∈ FP such that φP (sP ) = tP . We may assume sP is

the germ of a section (s, UP ) ∈ F(UP ) for some neighborhood UP of P . Note that

φ(s, UP ) and (t, U) have the same germ at P . Choosing UP sufficiently small, we

may assume UP ⊂ U and φ(s, UP ) = (t, U)|UP . Then for any two points P,Q ∈ U ,

we have
φ(s, UP )|UP ∩UQ = (t, U)|UP ∩UQ = φ(s, UQ)|UP ∩UQ .

By the injectivity of φ(UP ∩ UQ) that we have proved above, we must have

(s, UP )|UP ∩UQ = (s, UQ)|UP ∩UQ . Note that {UP }P∈U form an open covering of

U . Since F is a sheaf, we may find a section (s, U) ∈ F(U) such that (s, U)|Up =

(s, UP ) for any P ∈ U . We have (φ(s, U))|UP = (t, U)|UP . Since G is a sheaf, we

must have φ(s, U) = (t, U). So φ(U) is surjective.

Before going on, we introduce some concepts from the theory of categories.

Let C be a category. A morphism f : A → B in C is called a monomorphism

or injective if for any two morphisms α, β : C → A satisfying fα = fβ, we have
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α = β. An epimorphism is defined similarly by reversing the directions of arrows.

More precisely, f : A → B is called an epimorphism or surjective if for any two

morphisms α, β : B → C satisfying αf = βf , we have α = β. If a morphism is

both injective and surjective, we say it is bijective. An isomorphism is a morphism

with a two-sided inverse. Any isomorphism is bijective. But a bijective morphism

may not be an isomorphism.

Let Ai (i ∈ I) be a family of objects in C. The direct product of Ai (i ∈ I) is

an object
∏
i∈I Ai together with a family of morphisms pi :

∏
i∈I Ai → Ai (i ∈ I)

called projections with the following universal property: For any object C and any

family of morphisms fi : C → Ai (i ∈ I), there exists one and only one morphism

f : C → ∏
i∈I Ai such that pif = fi for any i. If the direct product of Ai (i ∈ I)

exists, it is unique up to unique isomorphism, that is, any two direct product of

Ai (i ∈ I) are isomorphic and the isomorphism between them is unique.

The direct sum of Ai (i ∈ I) is defined similarly as above by reversing the

directions of arrows. More precisely, the direct sum of Ai (i ∈ I) is an object

⊕i∈IAi together with a family of morphisms ki : Ai → ⊕i∈IAi (i ∈ I) with

the following universal property: For any object C and any family of morphisms

fi : Ai → C (i ∈ I), there exists one and only one morphism f : ⊕i∈IAi → C such

that fki = fi for any i. If the direct product of Ai (i ∈ I) exists, it is unique up

to unique isomorphism.

Let (I,�) be a directed set. A direct system (Ai, φij)i∈I consists of a family of

objects Ai (i ∈ I) and morphisms φij : Ai → Aj for pairs i � j such that φii = idAi

for any i and φjkφij = φik whenever i � j � k. The direct limit of a direct system

(Ai, φij) is an object dir. limiAi together with morphisms φi : Ai → dir. limiAi

(i ∈ I) satisfying φjφij = φi whenever i � j and having the following universal

property: For any object C and any morphisms ψi : Ai → C (i ∈ I) satisfying

ψjφij = ψi (i � j), there exists a unique morphism ψ : dir. limiAi → C such that

ψφi = ψi for any i. If the direct limit exists, it is unique up to unique isomorphism.

Let (A′
i, φij)i∈I be another direct system. A morphism from (Ai, φij) to (A′

i, φij)

is a family of morphisms ui : Ai → A′
i (i ∈ I) such that for any i � j, the following

diagram commutes:
Ai

ui→ A′
i

φij ↓ ↓ φ′
ij

Aj
uj→ A′

j .

It induces a morphism dir. limi ui : dir. limiAi → dir. limiA
′
i.
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An inverse system (Ai, φji)i∈I consists of a family of objects Ai (i ∈ I) and

morphisms φji : Aj → Ai for pairs i � j such that φii = idAi for any i and

φjiφkj = φki whenever i � j � k. The inverse limit of an inverse system (Ai, φji)

is an object inv. limiAi together with morphisms φi : inv. limiAi → Ai (i ∈ I)

satisfying φjiφj = φi whenever i � j and having the following universal property:

For any object C and any morphisms ψi : C → Ai (i ∈ I) satisfying φjiψj = ψi

(i � j), there exists a unique morphism ψ : C → inv. limiAi such that φiψ = ψi

for any i. A morphism from an inverse system (Ai, φji)i∈I to an inverse system

(A′
i, φji)i∈I is a family of morphisms ui : Ai → A′

i (i ∈ I) such that for any i � j,

the following diagram commutes:

Aj
uj→ A′

j

φji ↓ ↓ φ′
ji

Ai
ui→ A′

i.

It induces a morphism inv. limi ui : inv. limiAi → inv. limiA
′
i. If (Ai, φji)i∈I is an

inverse system of sets, then inv. limiAi is the subset of
∏
iAi consisting of those

elements (xi) ∈
∏
iAi satisfying φji(xj) = xi for any i � j.

A category C is called an additive category if for any objects A,B and C in C,
the direct product of A and B exists, Hom(A,B) is an Abelian group, and the

map

Hom(A,B)× Hom(B,C)→ Hom(A,C), (f, g) �→ gf

is a homomorphism. We call 0 ∈ Hom(A,B) the zero morphism.

Proposition 1.1.2 Let C be an additive category and let A and B be two objects

in C.
(i) Let p1 : A × B → A and p2 : A × B → B be the projections. Define

k1 : A → A × B to be the unique morphism satisfying p1k1 = idA and p2k1 = 0,

and define k2 : B → A × B to be the unique morphism satisfying p1k2 = 0 and

p2k2 = idB . Then we have k1p1 + k2p2 = idA×B.

(ii) Suppose we have an object P and morphisms p1 : P → A, p2 : P → B,

k1 : A→ P , k2 : B → P such that

p1k1 =idA,

p2k2 =idB,

k1p1 + k2p2 =idP .
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Then P together with the morphisms p1 : P → A and p2 : P → B is the direct

product of A and B, P together with the morphisms k1 : A→ P and k2 : B → P

is the direct sum of A and B.

Proof (i) It is easy to verify that

p1(k1p1 + k2p2)=p1idA×B,

p2(k1p1 + k2p2)=p2idA×B.

By the universal property of the direct product, we have k1p1 + k2p2 = idA×B.

(ii) We have

p1k2 =p1idP k2 = p1(k1p1 + k2p2)k2

=(p1k1)(p1k2) + (p1k2)(p2k2) = p1k2 + p1k2

=2p1k2.

So p1k2 = 0. Similarly p2k1 = 0.

Let’s prove (P, k1, k2) is the direct sum of A and B and leave to the reader to

prove (P, p1, p2) is the direct product of A and B. Given any object C and any

morphisms f1 : A→ C and f2 : B → C, define f = f1p1 +f2p2. It is easy to verify

that fk1 = f1 and fk2 = f2. If f ′ : P → C is a morphism such that f ′k1 = f1

and f ′k2 = f2, then we have

f ′ = f ′idP = f ′(k1p1 + k2p2)

= (f ′k1)p1 + (f ′k2)p2 = f1p1 + f2p2.

This proves (P, k1, k2) has the required universal property.

Let C be an additive category and f : A → B a morphism in C. We say a

monomorphism K → A is the kernel of f if the composite K → A→ B is 0, and

for any morphism K ′ → A such that the composite K ′ → A→ B is 0, there exists

a unique morphism K ′ → K such that the diagram

K ′

↓ ↘
K → A

commutes. We often denote K by kerf and call it the kernel of f . Similarly we

define the cokernel of f to be an epimorphism B → C such that the composite
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A → B → C is 0, and for any morphism B → C′ such that the composite

A→ B → C′ is 0, there exists a unique morphism C → C′ such that the diagram

B → C

↘ ↓
C′

commutes. We often denote C by cokerf and call it the cokernel of f . We define

the image of f to be the kernel of the cokernel of f , and define the coimage of f to

be the cokernel of the kernel of f . There exists a canonical morphism coimf → imf

from the coimage to the image such that the diagram

A → B

↓ ↑
coimf → imf

commutes. For example, when f : A→ B is a morphism in the category of Abelian

groups, then

kerf ={a ∈ A|f(a) = 0},
imf ={b ∈ B|b = f(a) for some a ∈ A},

cokerf =B/imf,

coimf =A/kerf,

and the canonical morphism from the coimage to the image is the canonical ho-

momorphism A/kerf → imf (which is an isomorphism).

Let C be an additive category. A zero object 0 in C is an object such that

Hom(0, 0) = {0}. This is equivalent to saying that the identity morphism of 0 is

equal to the zero morphism. For any object X in C, we have Hom(X, 0) = {0}
and Hom(0, X) = {0}. Zero objects in C are isomorphic to each other.

An Abelian category C is an additive category with zero objects such that for

any morphism f in C, the kernel and cokernel of f exist (and hence the image and

coimage of f exist), and the canonical morphism coimf → imf is an isomorphism.

In an Abelian category, a bijective morphism is an isomorphism. Indeed, if

f : A → B is injective, then the kernel of f is 0 → A and the coimage of f

is idA : A → A. If f : A → B is surjective, then the cokernel of f is B → 0

and the image of f is idB : B → B. If f : A → B is bijective, then the canonical

morphism coimf → imf is just f : A→ B. Since coimf → imf is an isomorphism,

f : A→ B is an isomorphism.
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Suppose u : A→ B is a monomorphism in an Abelian category. We often say

A is a sub-object of B. Let B → C be the cokernel of u. We call C the quotient of

B by A and denote it by B/A.

In an Abelian category, a sequence of morphisms

A
u→ B

v→ C

is called exact if vu = 0 and the canonical morphism coimu→ kerv is an isomor-

phism. An exact sequence of the form

0→ A→ B → C → 0

is called a short exact sequence. This short exact sequence is called split if it is

isomorphic to

0→ A→ A⊕ C → C → 0,

where A→ A⊕ C and A⊕ C = A× C → C are the canonical morphisms.

Proposition 1.1.3 Let

0→ A1
i1→ A

p2→ A2 → 0

be a short exact sequence in an Abelian category. The following conditions are

equivalent.

(i) The above short exact sequence is split.

(ii) There exists a morphism p1 : A→ A1 such that p1i1 = idA1 .

(iii) There exists a morphism i2 : A2 → A such that p2i2 = idA2 .

Proof (i)⇒(ii) and (i)⇒ (iii) are obvious.

(ii)⇒(i) Consider the morphism idA − i1p1 : A→ A. We have

(idA − i1p1)i1 = i1 − i1(p1i1) = 0.

Since A2 is the cokernel of i1 : A1 → A, there exists a morphism i2 : A2 → A so

that idA − i1p1 = i2p2. Our assertion then follows from Proposition 1.1.2 (ii).

Similarly one can prove (iii)⇒(i).

Let F : C → D be a covariant functor between Abelian categories. We say F

is additive if for any objects A and B in C, the map

Hom(A,B)→ Hom(F (A), F (B))
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is a homomorphism. We then have

F (A⊕B) ∼= F (A) ⊕ F (B).

Indeed, keeping the notations in Proposition 1.1.2 (i) and applying F to the equal-

ities there, we get

F (p1)F (k1)= idF (A),

F (p2)F (k2)= idF (B),

F (k1)F (p1) + F (k2)F (p2)= idF (A⊕B).

So by Proposition 1.1.2 (ii), (F (A ⊕ B), F (k1), F (k2)) is the direct sum of F (A)

and F (B). Hence if

0→ A→ B → C → 0

is a split short exact sequence, then

0→ F (A)→ F (B)→ F (C)→ 0

is also a split short exact sequence.

Note that the category of Abelian groups is an Abelian category. We leave to

the reader to prove the following proposition:

Proposition 1.1.4 LetX be a topological space. Then the category of presheaves

of Abelian groups on X is an Abelian category. Let φ : F → G be a morphism of

presheaves of Abelian groups. Then the kernel, cokernel and image of φ are the

presheaves defined by

(kerφ)(U)=ker(φ(U) : F(U)→ G(U)),

(cokerφ)(U)=coker(φ(U) : F(U)→ G(U)),

(imφ)(U)= im(φ(U) : F(U)→ G(U))

for every open subset U of X . The stalks of these presheaves at a point P ∈ X
are given by

(kerφ)P =ker(φP : FP → GP ),

(cokerφ)P =coker(φP : FP → GP ),

(imφ)P =im(φP : FP → GP ).




