CHAPTER 1

Classical Mechanics

1.1 NEWTON’S LAWS, THE ACTION, AND THE HAMILTONIAN

1.1.1

The superposition principle and the probability interpretation determine the math-
ematical framework of quantum mechanics. But, like Newton’s three laws of clas-
sical mechanics, these two ideas do not tell us what the observables or how they
change with time. For this physics still leans on classical mechanics in the form
of the correspondence principle; not just the obvious idea that classical mechanics
comes out of quantum mechanics in the appropriate limit, but the deeper idea that
classical Hamiltonian mechanics leads to the correct quantum rules.

The equations of motion in quantum mechanics look like the equations of mo-
tion in classical mechanics. This resemblance has been a powerful tool for guessing
the rules in quantum mechanics. The method, called canonical quantization, is
based on Hamilton’s “canonical” formulation of classical mechanics in terms of p’s
and ¢’s. There is also a Lagrangian approach, the powerful path integral formula-
tion of quantum mechanics, but even there the underlying postulates are stated in
the Hamiltonian formalism.

Canonical quantization is not guaranteed to work—its predictions must be
tested experimentally. And there are quantum mechanical ideas like spin and parity
that have no close classical analog. Nevertheless it has proved a powerful idea,
predicting correctly the behavior of quantum systems and, as a bonus, giving us
hope that if the classical theory is consistent, then so is the corresponding quantum
theory.

In this chapter I will review very briefly Hamiltonian classical mechanics with
a particular view to those features we will use in quantum mechanics.

Newton’s Law and Lagrange’s Equations

Let us start where one always starts, from Newton’s laws. The simplest mechanical
systems have vector coordinates ry, one vector for each particle. The kinetic energy

is
1 . 1 .
T = 5 zn:mnri =3 ;mnri’i (1.1)

where 7, ; are the three Cartesian coordinates of the n-th particle. The potential
energy V(rp,Ty,t) is a function of the coordinates and perhaps the velocities. In
the simplest cases V is independent of r,, and also of the time. For these systems
the Lagrangian is defined as

L=T-V (1.2)

L is a function of the coordinates and velocities. It depends on the time, since
the coordinates and velocities depend on the time. The i-th component of the force
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on the n-th particle is

ov oL
ng = — = L.
E ’ 67‘11,1’ a"'ni ( 3)
while its momentum is
oL

Pn,i = mnf‘n,i = (14)

Orn,i
In computing these partial derivatives we mean to vary L with respect to 7y, ;, 7 i,
and its explicit dependence on t, not its numerical value as a function of . The
latter is the variation dL/dt.

With these definitions Newton’s third law

can be written d oL oL
Eafn,,- - 67‘71’1' (1‘6)
or more concisely
d 0L 0oL
— == _ 2 1.7
dt Ory, ory, ( )

The index k now runs over all n and i. Equations (1.7) are Lagrange’s equations.

Hamilton's Principle

Lagrange’s equations make it easy to write the laws of motions in coordinates
other than Cartesian coordinates, like spherical coordinates or confocal hyperbolic
coordinates. One way to do that is to start in Cartesian coordinates and use the
chain rule. The action provides a more elegant solution.

In general the Lagrangian can be a function of the time ¢ as well as the
coordinates and the velocities. Define the action as a functional of the coordinates
and velocities:!

to t2
S = L(’I‘l...’r‘k,f‘l...'/‘k,t)dtz/ L(’r‘,f‘,t)dt (1.8)
t1 31

In the second form the symbols r and 7 stand for 3n functions each. The
endpoints of the integral are arbitrary fixed times. The value of the action depends
on how the system gets from the configuration at ¢; to the configuration at ¢,
subject only to the condition that it has the same coordinates at the start and at
the finish. For any such path described by 7(t) the action has some value. Only
one of these paths is a solution to Newton’s law, and that one is an extremum of
the action. To prove this, expand S about the correct path, keeping the values at
the endpoints fixed. To first order,

t2

So+08S= [ L(r+6r+ 6 ¢t)dt

t1

t2 9L 2 9L .
—So+;/tl a—rk(s?"kdt'f-zk: a—rkarkdt-f-

t1

(1.9)

LA functional is a special kind of function, one whose argument is a function but whose value
is a number.
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But 074 (t) = ddry/dt, so

t2 aL d
05 = Z/tl (8rk Prr dtark) dt
t2 oL d oL
—Z/ (8_7~k5k+dt (a 5“)‘(2;;3—@)5”)“

The middle term is zero because dry = 0 at the endpoints. So

6S = Z/t2 <8rk (jt ng) m) dt =0 (1.11)

t1

(1.10)

Newtonian mechanics is equivalent to the statement that the classical physical path
is the one that minimizes (more precisely extremizes) the action.

Equation (1.11) remains true under a reparametrization of the coordinates
and velocities. Let g, be any 3n functions of the r, and write L as a function of
qx and gx: \

2
0=465= 6/ L(q,q,t)dt (1.12)
t1

where ¢ and ¢ stand for the new collection of 3n coordinates and velocities. Equation
(1.12) is Hamilton’s principle. It has the form of a standard problem in the
calculus of variations, like the brachistochrone problem first solved by Newton. The
same steps as above, in the reverse order, lead to the Euler-Lagrange equations
in any coordinates:

ddL _aL

— - = 1.
dt 0¢r  Oqx (1.13)

Of course equation (1.13) can also be derived from Newton’s law by manipulating
the chain rule for partial derivatives, or from d’Alembert’s principle.

Hamilton’s principle makes it easy to describe systems where the force depends
on the velocity, not just the position, of the particles. For velocity-independent
potentials as above, equation (1.11) restates Newton’s second law. While not all
dynamical systems are so simple that they can be written like this in terms of a
potential function, all physical systems we know of can be written in terms of an
action functional and a Lagrangian.

Example: Charged particle in an electromagnetic field
The most important example that is not trivial is a particle moving in a prescribed

electromagnetic field. In terms of the electrostatic potential ¢(r,t) and the magnetic
vector potential A(r,t), the fields are?

10A
B=VxA and E——qu—-—-aa—t (1.14)
The correct Lagrangian for a single charged particle is
1
L= —2—m1"2 —qoé(r,t) + %A(r, t)-r (1.15)

21 use Gaussian (cgs) units throughout.



1.1.3

4 Chapter 1 Classical Mechanics

where q is the particle’s electric charge. Here is the demonstration:

oL q
ar Bn Z ’

oL
= = mi, + 1A, 1.16
o7, = Mt cAz (1.16)
dOL _ i AN~ 0Ai.  q0A
dt Or; - * 8rj T ¢ ot

The Euler-Lagrange equations are

. g 0A;
R -2 1.17
M qar, Z < or;  or; ) R (1.17)
The middle two terms on the right can be written3
_ 04 q . q
== T == B); 1.1
Z( s ) 2wV X A= L(v X B) (1.18)
while the remaining two terms are
09 10A;
g%, 1 = qE; 1.19
q (67"1 + c Ot ) q ( )

Hamilton’s principle for this Lagrangian is solved by
1
mi = gq (E + E(v X B)) (1.20)

Equation (1.20) is the Lorentz force law.

Canonical Momenta and the Hamiltonian Formulation

The momentum canonically conjugate to gy, is defined by

oL

- 1.21
Odx (1.21)

Pk =

For a Lagrangian of the form L = T — V(r), the canonical momentum is the same
as the mechanical momentum, but not in general. For the electromagnetic example
above, the canonical momenta are

oT ¢ q
= — + 2 As(r,t = =A 1.22
Dk o5 + k(r,t) or  p=mv+=- (1.22)
It is useful to express Hamilton’s principle in terms of the ¢’s and the p’s. Todo
that one makes a Legendre transformation analogous to those used in elementary

36¢jk is the totally antisymmetric Levi-Civita symbol, See Appendix A.1.
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thermodynamics. Think of L as a functional with p instead of ¢ as one of the
independent variables. Then define the Hamiltonian as

H(p,q,t) = ) prdx — L(p, ;1) (1.23)
k

Example: Particle in a potential
In the simple potential case,

H:mzpqu-Lsz(%)2—L=2T—T+V=T+V (1.24)
k k

The value of H will almost always be the energy, as it is here, but it is the functional
dependence of H on the p’s and the ¢’s that is important.

Example: Charged particle in an electromagnetic field
For a particle in an electromagnetic field, the value of the Hamiltonian is indeed
the energy:

1
H:p~1"—L=(mv+%A)~i‘—§mv2+q¢—%A-v
1, (1.25)
=5mv" +q¢

The magnetic field B does not contribute to the value of the energy, but it does
enter the equations of motion. In terms of p and r the Hamiltonian is

1

H=>—(p- %A)2+q¢> (1.26)

Hamilton’s Equations
Expand the Hamiltonian for arbitrary gx and py about the physical values:

oL oL
0H = k00K + DEOGr — =—0qr — =—04
5 (0t pesie s — g 1
2
. oL (127)
= > | ddpr - 90z 0%k
% dk
If the pi and g are solutions to the Euler-Lagrange equations (1.13), then
6H =) (4xdpk — Prda) (1.28)
k
Since the px and gx are varied independently,
O0H O0H
k= =— and D = — = 1.29
&= o Pk Oqx (1.29)

These are Hamilton’s equations of motion. They have exactly the same content as
equations (1.13).



6 Chapter 1 Classical Mechanics

Example: Particle in a potential
For a mechanical particle in Cartesian coordinates, H = T + V, and equations

(1.29) are
1 ov
= Dy = — ——— ].
Tk = — Dk and  pg B (1.30)
Differentiate one more ) 1 v
Fr= —p, = — 2" 1.31
Tk mpk m ark ( )

ormi =F.

Example: Charged particle in an electromagnetic field
For a particle in an electromagnetic field, the equations of motion are

. O0H 1 g, 904, 0¢
Pk = —8_7'1; - ’r_n— Z <pl ZA’) C 87‘k qa’r‘k (1 32)
. _OH 1 q '
= Gpe = (P 54)
Differentiate:
P q . _ Vi 6Ai (9Ak (9(25 16Ak
mry = (pk B cAk) o q; c (3rk or; ) 1 <8rk + c Ot (1.33)

v
=a(Be+ (5 xB))
Again, one gets the Lorentz force law in the nonrelativistic limit.

1.2 CLASSICAL SPACE-TIME SYMMETRIES

Ever since Galileo discovered the principle of relativity, the invariance of the laws
of nature under certain changes of the coordinate system has been a fundamental
tenet of physics. That the laws are the same even if you rotate or translate the
coordinates is the mathematical statement of the principle. No experiment can
discover the origin of coordinates or the orientation of the coordinate axes; they
are arbitrary.

In both classical and quantum mechanics, symmetries are closely connected
to conservation laws. Why is that? One way to solve a problem in classical mechan-
ics is to find coordinates and momenta that make the Hamiltonian H independent
of some of the coordinates. Then the conjugate momenta will be constants of the
motion. For instance if H is independent of the differences of the positions of the
particles, the total momentum is conserved. If H is independent of the angle of a
rotation in some plane, that component of angular momentum is conserved.

1.2.1 The Space-Time Transformations

For isolated physical systems, these transformations are all symmetries in the sense
that when the coordinates undergo these transformations, for isolated systems, the
form of the physical laws is unchanged.
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Translations shift the coordinates by a vector a. There is no absolute origin
to the coordinate system, and no experiment can find out where it is. Time trans-
lations change the value of a coordinate to its value at a different time. There is no
absolute meaning to the setting of the clock or the calendar, and so no experiment
can find out when t = 0 was or will be.

Rotations by an angle 6 about the direction of a unit vector #i are described
by a 3 x 3 real orthogonal matrix R, one whose transpose is its inverse. Usually
the word “rotation” excludes reflections, and so is reserved for real orthogonal 3 x 3
matrices that are unimodular, that is, have determinant +1. There is no absolute
preferred orientation of the coordinate system. Boosts change the coordinates to
ones moving with a uniform velocity relative to the first, and neither of the two
frames of reference is preferred by nature. This is the principle of relativity that
Galileo discovered.

Note: The nonrelativistic form of the boosts given here is not really a symmetry of
nature. In the real world Galilean boosts are replaced by the relativistic (Lorentz)
form. We will study those in detail in Chapter 12.

Reflections change the sign of all three coordinates, and time inversion reverses
the direction of the clocks. Reflection invariance means there is no absolute meaning
to the distinction between left-handed coordinate systems and right-handed ones.
Time-inversion invariance means that if you recorded the time of all events by a
clock that is running backward, the laws of nature would be satisfied as well.

All the fundamental physical laws are invariant under translations, time trans-
lations, rotations, and Lorentz boosts. The most common laws are invariant under
all the transformations listed in Table 1.1, but the weak interactions are not invari-
ant under R, and (probably) not even 7. The discrete symmetries are valid for
electromagnetic, nuclear, and even gravitational forces.

Quantum systems have these symmetries and more: The additional ones are
often called internal symmetries because they have nothing obvious to do with
space and time. Examples of internal symmetries are charge conjugation or matter-
antimatter symmetry, isotopic spin, and electromagnetic gauge invariance.

Table 1.1 shows what some symmetry transformations do to the Cartesian
coordinates x, y, and z of a particle.?

Observables are usually functions of the momenta as well as the coordinates,
so you have to know how the momenta transform too. It is not enough to know
how the coordinates transform under a symmetry. In Cartesian coordinates the
momenta transform as in Table 1.2.

The form of the equations of motion is unchanged under the transformations
indicated, provided they are indeed symmetry transformations. Except for those
that involve the time explicitly—time translation, time inversion, and the boosts—
this means that the Hamiltonian must be invariant under the transformation.

What properties of a transformation are independent of the quantity being
transformed? These are the universal structure of the transformations themselves,

4Rather than change coordinate systems as one does in general relativity, I will always define
symmetries of a system by what a transformation does to observables. This is the “active” point
of view. The opposite convention just replaces all the transformations with their inverses.
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Translations: T(a) r;—r;+a

Time translations:  U(t,) r;(t) — ri(t+1t,)

Rotations: R(n,0) rim — Zizl Ron (2, 0)7;
Galilean boosts: G(v) ri—r;+vt

Reflections: R r; — —r;

Time inversion: T r;(t) — ry(—t)

TABLE 1.1: The space-time symmetries of classical physics: Coordinate transformations

Translations: T(a) p;— p:

Time translations:  U(t,) p:(t) — pi(t +to)
Rotations: R(#,0) pim — 3> _, Run(R,0)pin
Galilean boosts: G(v) pi—pi+mv

Reflections: R Pi — —pi

Time inversion: T pi — —pi(—t)

TABLE 1.2: The space-time symmetries of classical physics: Momentum transformations

the rules for composing them. Under composition, the transformations form a
group.® The composition rules, or group multiplication, are geometrical and can
be taken over directly into quantum mechanics.

1.2.2 Translations

Now I want to examine translations and rotations in more detail. Translations are
the simplest, since they all commute with one another:

T(a1)T(az) = T(a1 + az) = T(az + a1) = T'(ag)T(a;) (1.34)

You can verify that this rule holds for translations on r and p given above.

The properties of any continuous group of transformations are almost com-
pletely determined by the properties of very small transformations. For transla-
tions, this means that if you expand T'(a) in a power series in a, you only have to
learn about the first-order term in the expansion. Geometrically, the large transla-
tions are determined by the small ones because any a can in principle be found by
composing, or integrating, a large number of small translations.

Let A be any observable. Under a small transformation T'(€), éry = € and

5The definition of a group can be found in Section 4.1.
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0pr =0. Then A — A+ §A (plus higher order terms) where

0A 0A 0A
6A = Zn: By O + ; Bp, 0P = ; T Zk: Vi A (1.35)

Rotations

Rotations do not all commute with one another, so they are both more complicated
and more interesting. A theorem (due to Euler) says that any rotation leaves some
axis unchanged; so any rotation can be described by a unit vector 7+ and an angle
6 of rotation about 7. That is, any of the 3 x 3 matrices R has an eigenvector 7
with eigenvalue unity: R7t = 7. I have been using this result in the notation for
the rotation matrices R(#, ).

The rotation matrices are worth learning about in some detail: Rotations
about the z-axis have the form®.

B cos@ —sinf O
R(7,,0) = | sinf  cosf O (1.36)
0 0 1

Approximate the matrix in equation (1.36) to first order in the angle:

B 0 —e O
R(fi,e) =14 | € 0 0 (1.37)
0 0 0
The transformed coordinate is
¥=x—-ey yY=ytex =z (1.38)
or
r =r+dr (1.39)
where
or=en, xr+--- (1.40)

There is nothing special about the z-axis. The result is general:

r=r+enxr+--- (1.41)
or in components
ori =€ Z €ijkMjTK + ++* (1.42)
Jik

Similarly, the first order change in the momentum is

pi =€) €knipk + - (1.43)
g,k

61 reserve the notation R(#,7) for these real 3 x 3 matrices, to distinguish them from the
abstract operation R(,7t) that appears in Tables 1.1 and 1.2. This is not a standard notation,
but I find it very convenient.
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First Order Transformations of Vectors

Examples of vectors observables are r, p, and L. Any three observables V; compo-
nents of a vector provided that under a rotation,

Vi = > RV, (1.44)
J
Then under a small rotation,
(SVZ =€ Z eijknij (1.45)
3k

or 6V = et x V. Observables that like the energy are invariant under rotations,
are called scalars.

Vector and Scalar Observables

In classical mechanics all observables are functions of the ry and the pg, so the
transformation properties of other observables can be deduced from the rules for

r and p. For example, the angular momentum of a particle is L = r x p. Under
rotations (exercise!)

Lm — Y R(#,0)mnLn (1.46)

Fields

Fields—Ilike the electric or the gravitational field—are observables that are functions
of space and time. They also transform in definite ways. The electrostatic potential
¢(r,t) introduced in equation (1.14) is an example of a scalar field. If you rotate
a field, the value at some point r after rotation is the same value it had before
rotation at the point that rotates into r. That is,

é(r,t) — ¢(r",t)  where 7 = Z R;'r; (1.47)
J

Another way to write this rule is ¢(r,t) — ¢'(r,t), where

T‘; = Z Rij’l”j and ¢,(I‘I, t) = ¢(I’, t) (148)
J

The transformation rule for fields like the magnetic vector potential is A;(r,t) —
Al(r,t) , where

ri=> Ryr; and  A(r,t) = Ri;Ar,1) (1.49)
J J

Reflections and Rotations

Ordinary vectors, like r and p, are odd under reflections. Ordinary scalars, like
p?/2m, are even under reflections. Vectors that have the opposite sign from r and
p under reflections, or scalars that have the opposite sign from the energy under
reflections, are called pseudovectors and pseudoscalars. Under a reflection L —



