CHAPTER 1

A First Numerical Problem

Many problems encountered in physics involve ordinary differential equations. Ex-
amples include projectile motion, harmonic motion, and celestial mechanics, topics
we will be discussing extensively in the next few chapters. We therefore begin with
a problem involving a first-order differential equation and use it to introduce some
computational techniques that will be employed extensively in later chapters. We
will also proceed step by step through the construction of a program to deal with
this problem, so as to illustrate in detail how a numerical approach is translated
into a (working) computer program.

In this chapter it is not possible to provide a complete introduction to pro-
gramming for students who have no previous exposure to the subject. Rather, our
goal is to enable students with some (even limited) experience in programming to
begin writing programs to treat the physics that will be encountered in this book.
However, those students with no prior experience should not give up hope! With
some extra effort and access to a good instructor or book on computer program-
ming (or both), such students should be able to handle the material in this and
later chapters.

1.1 RADIOACTIVE DECAY

It is well known that many nuclei are unstable. A typical example is the nuclear
isotope 23°U (the uranium nucleus that contains 143 neutrons and 92 protons, for
a total of 235 nucleons), which has a small, but not insignificant, probability for
decaying into two nuclei of approximately half its size, along with an assortment
of protons, neutrons, electrons, and alpha particles. This process of radioactive
decay is random in the following sense. If you were given a single ?3°U nucleus,
you would not be able to predict precisely when its decay would take place. The
best you could do would be to give the probability for decay. An equivalent way to
describe such a process would be to give the average time for decay; for 235U the
mean lifetime is approximately 1 x 10% years.

It is useful to imagine that we have a sample containing a large number of 235U
nuclei, which would usually be the case if we were actually doing an experiment to
study radioactive decay. If Ny (¢) is the number of uranium nuclei that are present
in the sample at time ¢, the behavior is governed by the differential equation

Ny _ _Nu (1.1)
dt T

where 7 is the “time constant” for the decay. You can show by direct substitution
that the solution to this differential equation is

Ny = Ny(0)e V7, (1.2)
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where Ny7(0) is the number of nuclei present at ¢ = 0. This solution may be familiar
to you; similar equations and similar solutions are found in many other contexts.!
We note that at time ¢ = 7 a fraction e~ ! of the nuclei that were initially present
has not yet decayed. It turns out that 7 is also the mean lifetime of a nucleus.

1.2 A NUMERICAL APPROACH

While the differential equation (1.1) can be solved without resorting to a numerical
approach, this problem is useful for introducing several computational methods
that will be used extensively in later chapters. With that in mind we now consider
a simple method for solving this problem numerically. Our goal is to obtain Ny as
a function of t. Given the value of Ny at one particular value of ¢ (usually at ¢t = 0),
we want to estimate its value at later times. This is called an initial value problem,
and various general approaches for solving such ordinary differential equations are
discussed in Appendix A. Here we will describe one particularly useful line of attack
that is based on the Taylor expansion for Ny,

dN 1 &N,
Ny(At) = Ny(0) + —Z At + = —Z
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where Ny (0) is the value of our function at time ¢t = 0, Ny(At) is its value at
t = At, and the derivatives are evaluated at ¢ = 0. If we take At to be small, then
it is usually a good approximation to simply ignore the terms that involve second
and higher powers of At, leaving us with

No(0) + LU A (1.4)

Ny (At) gt

%

The same result can be obtained from the definition of a derivative. The
derivative of Ny evaluated at time ¢ can be written as
NU(t + At) - NU(t) NU(t + At) — NU(t)

dNy )
& C oAl At = At ’ (15)

where in the last approximation we have assumed that At is small but nonzero.
We can rearrange this to obtain

No(t+ A1) ~ No(t) + S At (1.6)
which is equivalent to (1.4). It is important to recognize that this is an approzima-
tion, which is why it contains the =~ symbol, not the = symbol. The error terms
that were dropped in deriving this result are of order (At)?, which makes them at
least one factor of At smaller than any of the terms in (1.6). Hence, by making At
small, we would expect that the error terms can be made negligible. This is, in fact,
the case in many problems, but there are situations in which the error terms can

1For example, an equation of this kind describes the time dependence of the voltage across a
capacitor in an RC circuit.
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still make life complicated. Therefore, it is important to be careful when discussing
the errors involved in this numerical approach; we will return to this point later in
this chapter, and in more detail in Appendix A.

From the physics of the problem we know the functional form of the derivative
(1.1), and if we insert it into (1.6) we obtain

NU(t+At) ~ NU(t) - &;@At . (17)
This approximation forms the basis for a numerical solution of our radioactive decay
problem. Given that we know the value of Ny at some value of ¢, we can use (1.7) to
estimate its value a time At later.? Usually we are given, or can manage to discover,
the initial value of the function, that is, the value at time t = 0. We can then employ
(1.7) to estimate its value at ¢ = At. This result can be used in turn to estimate the
value at t = 2At, 3At, etc., and thereby lead to an approximate solution Ny (nAt)
at times nAt where n is an integer.> We cannot emphasize too strongly that the
numerical “solution” obtained in this way is only an approzimation to the “true,”
or exact, solution. Of course, one of our goals is to make the difference between the
two negligible.

The approach to calculating Ny (t) embodied in (1.6) and (1.7) is known as
the Fuler method and is a useful general algorithm for solving ordinary differential
equations. We will use this approach, and closely related methods, extensively in
this book. Other methods for solving equations of this kind will be discussed in
later chapters, and more systematic discussions of all of these approaches and the
typical errors associated with them are the subject of Appendix A. For now, the
reader should realize that while the Euler method arises in a very natural way, it
is certainly not the only algorithm for dealing with problems of this sort. We will
see that the different approaches have their own strengths and weaknesses, which
make them more or less suitable for different types of problems.

1.3 DESIGN AND CONSTRUCTION OF A WORKING PROGRAM: CODES AND
PSEUDOCODES

In the previous section we introduced the Euler method as the basis for obtaining
a numerical solution to our radioactive decay problem. We now consider how to
translate that algorithm into a working computer program. Perhaps the first choice
that one must make in writing a program is the choice of programming language.
From the authors’ experiences, there are many programming languages that are
well suited for the kinds of problems we address in this book, and it is impossible
for us to give example programs in all of these languages. However, it is possible
to describe the structure of a program in a general way that is useful to users of
many different languages. We will do this using a “language” known as pseudocode.
This is not a precise programming language, but rather a description of the essential

2As you might expect, the quality of this estimate, i.e., its accuracy, will depend on the value
of At. This is a very important issue that we will be discussing in some detail below and in
Appendix A.

3Note that errors made each at each time step, i.e., each time (1.7) is used, will accumulate.
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parts of an algorithm, expressed in “common” language. The idea is to give enough
detail so that you (the readers of this book) can see how to translate each piece of
pseudocode into the specific instructions of your favorite programming language.
In most of this book, we will give our examples only in pseudocode. However,
in this chapter we will work through an example using pseudocode along with
actual codes in two popular languages, Fortran and C, so that you can see how
the translation from pseudocode to an actual programming language can be done.*
Working programs for many of the problems in this book are available in Fortran,
C, and Basic at our Web site.5.

While programming, like handwriting, is a highly individualized process, there
are certain recommended practices. After all, as in handwriting, it is important
that we be able to understand programs written by others, as well as those we
ourselves have written! With that in mind, this book will try to promote proper
programming habits. The (admittedly very loose) analogy between handwriting
and programming can be carried one step further. The first thing you should do
in writing any program is to think. Before writing any detailed code, construct an
outline of how the problem is to be solved and what variables or parameters will
be needed. Indeed, the pseudocode version of a program will often provide this
outline. For our decay problem we have already laid the foundation for a numerical
solution in our derivation of (1.7). This equation also contains all of the variables
we will need, Ny, t, 7, and At. Our stated goal was to calculate Ny (t), but since
the numerical approximation (1.7) involves the values of Ny only at times ¢t = 0,
t = At, t = 2At, etc., we will actually calculate Ny at just these values of t. We
will use an array to store the values of Ny for later use. An array is simply a table
of numbers (which will be described in more detail shortly). The first element in
our array, that is, the first entry in the table, will contain Ny at ¢ = 0, the second
element will be the value at t = At, and so on. Our general plan is then to apply
(1.7) repetitively to calculate the values of Ny (t).

The overall structure of the program consists of four basic tasks: (1) declare
the necessary variables, (2) initialize all variables and parameters, (3) do the cal-
culation, and (4) store the results.

EXAMPLE 1.1 Pseudocode for the main program portion of the radioactive
decay problem

e Some comment text to describe the nature of the program.

> Declare necessary variables and arrays.
> initialize variables.

> Do the actual calculation.

> store the results.

4We are certainly not implying that everyone should use Fortran or C, but these are the authors’
favorites.
Syww.physics.purdue.edu/~giordano/comp-phys.html



Section 1.3 Design and Construction of a Working Program: Codes and Pseudocodes 5

Note that this is only the main program; the individual tasks such as ini-
tialization of variables and the actual calculation, will be done in subroutines or
functions, which we will discuss below. First we consider how this main program
might look in Fortran.b

radioactive decay main program in Fortran

(¢}

Simulation of radioactive decay
c Program to accompany "Computational Physics" by N. Giordano/H. Nakanishi
program decay
c declare the arrays we will need
double precision n_uranium(100), t(100)
c use subroutines to do the work
call initialize(n_uranium,t,tau,dt,n)
call calculate(n_uranium,t,tau,dt,n)
call store(n_uranium,t,n)
stop
end

Our program begins with a few comment statements that identify the program
and tell a little about what it is supposed to do. In Fortran, comment lines are
indicated by the ‘c’ in the first character in a line. Similar features are present in
most languages.

The first line program decay gives the name of the main program. The line
double precision n_uranium(100), t(100) declares the two arrays that will be
used to store Ny and ¢. This is done in the main program because the subroutines
that do the work will pass the arrays among ach other through the main program.
The first array, n_uranium(), will contain the calculated values of the number of
uranium nuclei, while t () will contain the corresponding values of the time. Here
we have arranged for our arrays n_.uranium() and t() to each hold 100 values, as
we expect this to be enough for this problem (of course, many languages allow one
to resize an array as needed during a calculation). Note that we have used the
descriptive name n_uranium to make the program easier to read and understand.
It is also tempting to use the name time for the other array (instead of t), but
some languages use time as a “reserved name” (e.g., the name of the time-of-day
function), so to be safe we will avoid using it.

The rest of the work is done in three subroutines, initialize, calculate,
and store which are called in succession. The subroutine names describe the
function of each; these tasks correspond directly to the general program outline
mentioned above. The call statements also include the names of the variables
that each routine needs to do its job. The subroutine initialize sets the initial
values of the variables, calculate uses the Euler method to do the computation,

6In the example Fortran codes that we list in this chapter, we have chosen an old (some may
say ancient) style for widest compatibility. Today’s Fortrans (Fortran90 and Fortran95), though
backward compatible with these examples, allow codes to be written in much more robust and
extensible ways. However, we are not teaching a computer language in this book, and thus have
decided to stick with the style that is most compatible with whatever compiler the reader may
have.
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and store puts the results into a file for later use (such as a graphical display). We
next consider these three routines.

EXAMPLE 1.2 Pseudocode for subroutine initialize

e Prompt for and assign Ny (0), 7, and At.
e Set initial value of time, #(0).
e Set number of time steps for calculation.

A Fortran version of this subroutine could read

Fortran version of subroutine initialize

subroutine initialize(nuclei,t,tc,dt,n)
c Initialize variables

double precision nuclei(1),t(1)

print *,’initial number of nuclei -> °

read(5,*) nuclei(1)

print *,’time constant -> ’

read(5,*) tc

print *,’time step -> ’

read(5,*) dt

print *,’total time -> °

read(5,*) time

t(1) =0

n=min(int (time/dt),100)

return

end

In Fortran all subroutines begin with the subroutine name statement where
name is the subroutine name. As in most other languages, the variables listed
in parenthesis after the word initialize are passed into and out of the subrou-
tine from/to the calling routine. This variable list must be in correspondence
with the list used when the subroutine is called from the main program (or any-
where else). Comparing the calling line and the first line of the subroutine, we
see that some of the names in the variable list in the “calling” part of the pro-
gram, n_uranium,t,tau,dt,n, and the list in the “receiving” part of the program,
nuclei,t,tc,dt,n are quite different. For example, the array names n_uranium
and nuclei do not agree. But, as in most languages, the array and variable names
declared within a subroutine definition are dummy names, and only the correspond-
ing arrays and variables in the calling program are actually used.

After getting the calling variables organized, the initialize subroutine sets
the initial values of the number of nuclei and the time. These are just the first
values in the arrays nuclei(1) and t(1). The print statements prompt the user
for input, while the read statements take in the values. The last job is to set the
value of n, which is the number of time steps to be performed.

The real work of computing the number of remaining nuclei is done in the
subroutine calculate.



Section 1.3 Design and Construction of a Working Program: Codes and Pseudocodes 7

EXAMPLE 1.3 Pseudocode for subroutine calculate

e For each time step ¢ (beginning with ¢ = 1), calculate Ny and t at step i + 1:
> Ny(tiy1) = Ny(t:) — (Ny(t;)/7)dt (Use the Euler method, (1.7))

> tiy1 =1 + At.
> repeat for n — 1 time steps

In Fortran this can be written as

Subroutine calculate in Fortran

subroutine calculate(n_uranium,t,tau,dt,n)
Now use the Euler method
c variable dimensioning is used for arrays n_uranium() and t()

double precision n_uranium(n),t(n)

do i = 1,n-1
n_uranium(i+1) = n_uranium(i)-(n_uranium(i)/tau)*dt
t(i+1) = t(i) + dt

end do

return

end

This routine loops through each time step using the do and continue state-
ments (other languages have analogous facilities to write simple loops). The key
statement is the one in which n_uranium(i+1) is calculated. This statement con-
tains all of the physics of the program and is closely analogous to (1.7). As men-
tioned above, the array n_uranium corresponds to the variable Ny (¢), and the value
stored in the ith element of n_uranium is the number of uranium nuclei present at
time t(1).

The final subroutine store writes the result to a file. It uses a standard
Fortran approach to store the results in the file decay.dat. The values of ¢ and
Ny are written as pairs, with a separate line for each value of t. The results can
then be read from this file, in order to plot the results, or use them in a subsequent
calculation.

Subroutine store in Fortran

subroutine store(n_uranium,t,n)
double precision n_uranium(n),t(n)
open(1,file=’decay.dat’)
do i=1,n
write(1,20) t(i),n_uranium(i)
end do
close(1)
20 format(1x,1p,2(e12.5,2x))
return
end




8 Chapter 1 A First Numerical Problem

For convenience, our complete Fortran program is listed in one piece below.

Fortran version of radioactive decay program

c Simulation of radioactive decay
¢ Program to accompany "Computational Physics" by N. Giordano/H. Nakanishi
program decay

[ declare the arrays we will need
double precision n_uranium(100), t(100)
c use subroutines to do the work

call initialize(n_uranium,t,tau,dt,n)
call calculate(n_uranium,t,tau,dt,n)
call store(n_uranium,t,n)

stop

end

subroutine initialize(nuclei,t,tc,dt,n)
c Initialize variables

double precision nuclei(1),t(1)

print *,’initial number of nuclei -> ’

read(5,*) nuclei(1)

print *,’time constant -> ’

read(5,*) tc

print *,’time step -> °’

read(5,*) dt

print *,’total time -> °’

read(5,*) time

t(1) =0

n=min(int (time/dt),100)

return

end

subroutine calculate(n_uranium,t,tau,dt,n)
c Now use the Euler method
c Variable dimensioning is used for arrays n_uranium() and t()
double precision n_uranium(n),t(n)
do i = 1,n-1
n_uranium(i+1) = n_uranium(i)-(n_uranium(i)/tau)*dt
t(i+1) = t(i) + dt
end do
return
end

subroutine store(n_uranium,t,n)
double precision n_uranium(n),t(n)
open(1,file=’decay.dat’)
do i=1,n
write(1,20) t(i),n_uranium(i)
end do
close(1)
20 format (1x,1p,2(el12.5,2x))
return
end
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We have spent a lot of time discussing a Fortran program for the radioactive
decay problem, but the basic ideas — the basic structure of the program — can
be implemented in many other languages. Below we give a program written in C
that does the same calculation, using the same program structure with the same
algorithm. It begins by declaring the necessary variables, then uses subroutines
initialize, calculate, and store, as outlined in the pseudocode in Example 1.3.
These subroutines are quite similar to those in the Fortran program given at left,
and produce identical results.

Radioactive decay program in C

/* decay.c
* Simulation of radioactive decay
* Program to accompany "Computational Physics" by N. Giordano/H. Nakanishi
*/

#include <math.h>

#include <stdio.h>

#define MAX 100

double n_uranium[MAX]; /* number of uranium atoms */

double t[MAX]; /* store time values here  */
double dt; /* time step */
double tau; /* decay time constant */
double t_max; /* time to end simulation */
main()

1{

initialize(n_uranium,t,&tau,&dt);
calculate(n_uranium,t,tau,dt);
store(n_uranium,t);

/* initialize the variables */
initialize(nuclei,t,tc,dt)
double *nuclei,*t,*tc,*dt;

{
printf("initial number of nuclei -> ");
scanf ("}1£f",&(nuclei[0])); /* begin using arrays at index 0 */
printf("time constant -> ");
scanf ("}1f",tc);
printf("time step -> ");
scanf ("/1f",dt);
t[0] = 0.0;
return;
}

/* calculate the results and store them in the arrays t() and n_u() */
calculate(nuclei,t,tc,dt)
double *nuclei,*t,tc,dt;
{
int i;
for(i = 0; i < MAX-1; i++) {
nuclei[i+1] = nucleil[i] - (nucleili] / tc) * dt;
t[i+1] = t[i] + dt;
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}
return;
}
/* save the results to a file */

store(nuclei,t)
double *nuclei,x*t;

{
FILE *fp_out;
int i;
fp_out = fopen("decay.dat","w");
for(i = 0; i < MAX; i++) {
fprintf (fp_out, "%g\tlhg\n",t[i] ,nucleilil);
}
fclose(fp_out);
return;
}

We have given specific example programs in Fortran and C, as these are
languages that we (the authors) use in our everyday work.” However, this certainly
does not mean that one of these languages is the best choice for you; that is a
judgment that you must make.

Next we come to an extremely important point, that is a key issue in nearly all
the problems we will discuss in this book. Our program decay calculates how Ny
varies with time, and puts the results as numbers into a file. However, we still have
the job of understanding the results. In this problem, and in most cases, this job
of understanding is best done by examining the results in graphical form. While
there will be times when the result of a calculation can be expressed or conveyed
as one or two numbers, it will usually happen that our calculations produce a
lot of numbers. Making sense of such results is almost always simplest when the
results are displayed graphically. In our decay problem we will want to make a
graph of Ny as a function of t. Methods for producing a graphical display, either
on a video display or on paper, can vary a lot from one computer platform and
language to another, and there is no way that we can possibly give a full discussion
of how you should go about it on your particular system. Some languages have very
powerful graphics capabilities “built-in” (e.g., Matlab and Mathematica), while in
other cases you may need to use separate graphics programs to display the results
in the file decay.dat.

The ability to easily display results in graphical form is absolutely essential for
work in computational physics. Fortunately, virtually all computer systems have
the programs you will need (so you will not have to write your own!). Before you go
much further in this book we urge you to learn how to use the graphics capabilities
of your particular system.

Figure 1.1 shows an example of the output produced by our radioactive decay
program, along with the exact result, Equation (1.2). Here we have used the initial
values n_uranium(1) = 100 and t(1) = 0, along with a time constant of 1 s and a
time step of 0.05 s. We will consider the choice of time step later. For now we note
only that our calculated values compare well with the exact result.

7This may also give you some idea of when we first learned to program.



