
Chapter 1 Basic concepts

内容提要

• 图与简单图的基本概念。
• 图的关联矩阵、邻接矩阵。
• 图的简单变换，包括剖分、并、连图、线图、路树等概念。
• 图的谱的概念和几类简单图的谱的计算。
• 代数中关于矩阵的特征多项式、瑞利商等相关结论。

1.1 Graph and simple graph

Examples of graph are not difficult to find. For one, a road map can be interpreted as a

graph, the vertex are the junctions and the edges are the stretch of road from one junctions to

another, similarly an electrical circuit may give us a graph in which the vertex are the terminals

and the edges are the wires. This graph is different from the lines and triangles, cycles in the

geometry, and the painting either. Here, the graph we talk about is present a kind of relation

on a set. For more the exact definition readers may read Discrete Mathematics. It is customary

to represent a graph G by drawing on paper. A graph G is an ordered pair of disjoint sets

(V (G), E(G), ψG), here the set V (G), E(G) are the vertex and the edge set, ψG is the incident

functions on V (G) and E(G), that is, if ψG(e) = uv we say e incident with u and v. The

vertices u and v are the end vertices of edge e, in other words, uv is an edge of G, we say u and

v are adjacent. Two edges are adjacent if they have exactly one common end vertex.

We give an example to familiar the reader with the graph and associated terminologies.

G = (V (G), E(G), ψG), here V (G) = (v1, v2, v3, v4), E(G) = (e1, e2, e3, e4, e5) and ψG is

defined as ψG(e1) = v1v2, ψG(e2) = v2v3, ψG(e3) = v3v4, ψG(e4) = v4v1, ψG(e5) = v2v4, then

this graph is showed in Fig 1.1.

e3

v3

v2

e2e1

e5

e4

v4

v1

Fig 1.1 a simple graph
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2 The Fundamental Theory Of Graphs

If more than one edge incident the same vertex, then we call graph has multi-edges, and

if the end vertices are same of an edge, then we call the edge is a loop. In this book, we only

think about the edges that do not have a direction. If a undirected graph without loops and

multi-edges we call this graph is a simple graph. The number of vertices of a graph G we

denoted as the order of G; the number of edges of a graph G we denoted as the size of G. For

convince, we take n as the order of a graph and m the size of a graph in this book. Usually we

denote n = |V (G)| and m = |E(G)|.
Now, we denote several kind of graphs that has very interesting properties:

If a graph of order n without edge we call it an empty graph write as En.

A graph of order n and size C2
n or C(n, 2) in some books is called a complete graph. This

graph is denoted by Kn. In Kn, every two vertices are adjacent, the graph K1 = E1 is said

to be trivial graph. A graph G is called a bipartite graph with vertex class V1, V2, if, and each

edge joins a vertex of V1 to V2. Kmn is a complete bipartite graph on n + m vertices, in fact,

it is a special case of general bipartite graph. The set of vertices adjacent to a vertex u ∈ G is

denoted by Γ (u). The degree of a vertex u is denoted as d(u) = |Γ (u)|. The minimum degree

of a graph is denoted by δ(G) and δ for short; the maximum degree by ∆(G) and ∆ for short,

if ∆ = δ = k we call this graph is k regular.

Example

In fig 1.1 minimal degree δ = 2, maximal degree ∆ = 3.

We say that H = (V ′, E′) is a subgraph of G = (V, E) if V ′ ⊆ V and E′ ⊆ E. In this

case, we write H ⊆ G. If H contains all edges of G that join two vertices in V ′ then H is

said to be the subgraph induced by V ′ and is denoted by G[V ′]. If H contains all the vertices

that incident with the edges E′ then we say H is a sub-graph induced by E′ and is denoted by

G[E′]. If V ′ = V then H is said to be a spanning subgraph of G. To example, we give several

subgraphs.

Example

A subgraph, an induced subgraph by edges, an induced subgraph by vertex and a spanning

subgraph. V1 = {v1, v2, v4}, E1 = {e1, e3, e5} in graph 1.1 H, G[V 1], G[E1] are Fig 1.2, Fig 1.3

and Fig 1.4 respectively.

v1 v2

v4

v3

v1

v2

v4

e1
e3

e5

Fig 1.2 subgraph of G Fig 1.3 vertex induced Fig 1.4 edge induced

graph G[V 1] graph G[E1]
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In order to give readers a wide bases, we give more terminologies, we call a subgraph A is

a clique if A ⊆ V (G) and every pairs of vertices are adjacent. In the sequent sections, we will

know it is a complete graph. On the other hand, if non vertices are adjacent in A we call A is an

independent set. We denote c(G) is the clique number of a graph witch is the maximal number

of vertices of all cliques of G, and α(G) is the maximal independent number of a graph.

Similar to the clique and independent set on vertex, we can extent these definitions to the

edge set, we call complete matching and an edge covering. We will study these in chapter 6 for

more information.

1.2 Graph operations

Sometimes, we study the properties of a graph by studying another graph get by trans-

forming the original graph. We will study the spectrum of graphs in chapter 1. calculate the

number of its spanning tree of a graph in chapter 3, calculate the matching number of graphs,

study the relation between the matching polynomial of a graph and the characteristic polynomial

of its path tree and study the coloring number of a graph in chapter 6. Here, we first present

some operations on graphs.

1. deleting an edge or a vertex from G, denoted as G-e or G-v.

2. subdivision an edge or split a vertex.

3. put two graphs together, write as G1 ∪G2.

4. contracting graph by an edge, delete an edge and put two end vertex together all other

vertex and edges keep same.

5. complete product(some books call it joint)G15G2 of G1 and G2 is the graph obtained

from G1 ∪G2 by joining every vertex of G1 with every vertex of G2.

In the following chapter, we may study the different polynomials defined on these trans-

formations. In this section, we study the properties on following transformations.

Definition 1.1 The complement of G, denoted by Gc, is the graph with V (G) = V (Gc)

such that two vertices are adjacent in Gc if and only if their are not adjacent in G.

Obviously, |V (G)| = |V (Gc)| and |E(G)|+ |E(Gc)| = C(n, 2) = n(n− 1)/2. We will have

more interesting results in the later chapters about the complement graph and with itself.
u

e

Fig 1.5 graph G and the graph delete e and split from u
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Example

We give another example for subdivision and contract by an edge of graph.

Fig 1.6 a simple graph and its line graph

e

Fig 1.7 the graph obtained by subdivision e and split from e

Example

We construct a new graph from the original one by a simple transformations. Besides

these, we also have several special operations these are very important in studying the graph

properties. The line graph L(G) of an undirected graph G is another graph L(G) that represents

the adjacency between edges of G. The line graph is also sometimes called the edge graph, the

adjoint graph, the interchange graph, or the derived graph of G. In Spectra of Graphs, readers

may find more graph transformations like the direct sun, the complete product, the product and

the total graph, etc.

Definition 1.2 Given a graph G, its line graph L(G) is a graph such that each vertex

of L(G) represents an edge of G; and two vertices of L(G) are adjacent if and only if their

corresponding edges share a common endpoint (“are adjacent”) in G.

We give an example for general simple graph G and its line graph L(G). We can easily

find an edge of G correspond to an vertex of its line graph L(G). In the graph above edge e

correspond to the vertex v of L(G). The degree of v of L(G) satisfies below formula

d(v) = d(vi) + d(vj)− 2, e = (uv)

Obviously, the edge set of L(G) is the edge set of G. The size of G became the order of its line

graph. The size of L(G) satisfy following equation.

E(L(G)) =
m∑

i=1

d(vi)
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We may give this formula and let the readers proof this as an exercise in the end of this

chapter.

E(L(G)) =
1
2

m∑

i=1

d(ei) =
1
2
(

n∑

i=1

d2
i − 2m)

In Fig 1.8, the number of edges of the line graph is 14. If G is k-regular, then L(G) is 2k−2

regular. Besides this, the maximal matching, the independent vertex set, the color number, the

connectivity and the character polynomial of G and L(G) are studied by many mathematicians.

In section 1.6, we will prove that the eigenvalues of a line graph L(G) are not less than −2.

Here, we cite several results about the characteristic polynomials of regular graphs. In the next

section, we will give the proof of this theorem.

Theorem 1.1([36]) If G is a k-regular graph with n vertices and m edges, P (G,λ) is the

characteristic polynomial of its adjacent matrix, then

ρ(L(G), λ) = (λ + 2)m−nρ(G,λ− k + 2)

It is interesting that the number of triangles in graph G and its line graph L(G) has

below relationship. Let us denote the triangle number of G and L(G) as ∆(G) and ∆(L(G)),

respectively, then

∆(L(G)) = ∆(G) +
n∑

i=1

C(di, 3)

where di is the degree of vertex vi in G.

We give an example of this formula here.

A semi-regular bipartite graph is a bipartite graph, Let V1, V2 be two parts of V (G), d(v) = s

if v ∈ V1; d(v) = t if v ∈ V2, then Shu jinlong has following theorem:

Theorem 1.2([37]) L(G) is a connected regular graph if and only if G is a connected

graph or semi-regular graph.

Let G15G2 (the complete product) denote the joint of G1 and G2 obtained by adding all

possible edges uv,u ∈ G1 and v ∈ G2.

Fig 1.8 The number of triangles in G and its line graph

Theorem 1.3([38]) Let G1 and G2 are k1-regular graph and k2-regular graph,

respectively, and k1 − k2 = n1 − n2, where n1 and n2 are the order of G1 and G2, respectively,
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then the quai-Laplacian polynomial of G1 ∨ G2 is L((G1 ∨ G2), x) =

(x− n1 − n2 − k1 − k2)(n2 − n1 − x + 2k1)(n1 − n2 − x + 2k2)
(x− k1 − k2 − 2)(n2 − x + 2k2)(n1 − x + 2k2)

L(G1, x− n2)L(G2, x− n1).

The matching polynomial and characteristic polynomial is connected by the graph and its

path tree.(see chapter 6) Here, we only give the definition and several simple results.

Definition 1.3 The path tree T (G, u) of G take vertex u as its root, if :

1. V (T (G, u))=all the paths start from u include u itself;

2. E(T (G, u))=(Pi, Pj) if one path is contained in the other maximally.

We give an example in Fig 1.9. Obviously, a path tree of Pn is Pn, Zhang hailiang in

[39] gave the path tree of several type of graph and studied the relation of the largest zero of

matching polynomial. In [4] and in [21], Ma haicheng proved that the largest zero of a graph’s

matching polynomial equals the largest zero of characteristic polynomial of its path tree. Zhang

hailiang gave following properties of several path tree of certain graphs.

u1 u1

u4u2u3u4 u

u2

u4u3

Fig 1.9 A simple graph and its path tree

Theorem 1.4 1. The path tree of Cn is P2n−1;

2. The path tree of Q(s, t) is Ts−1,s−1,t−1, or Ts−2,t−1,s+t−1 or Ti,t−1,s−1,t−1,j, where i+j =

s− 1.

Let the n vertices of the given graph G be v0, v1, . . . , vn. The Mycielski graph of G

contains G itself as an isomorphic subgraph, together with n + 1 additional vertices: a vertex

ui corresponding to each vertex vi of G, and another vertex w. Each vertex ui is connected by

an edge to w, so that these vertices form a subgraph in the form of a star K1,n. In addition,

for each edge vivj of G, the Mycielski graph includes two edges, uivj and viuj .

Thus, if G has n vertices and m edges, My(G) has 2n + 1 vertices and 3m + n edges.

Mycielski’s construction is applied to a 5-vertex cycle we get a graph which is called the Grotzsch

graph. this graph has 11 vertices and 20 edges. The Grotzsch graph is the smallest triangle-free

4-chromatic graph (Chv á tal 1974). Zhang hai liang in [18] studied the matching polynomial

and matching equivalent graphs of this graph.
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1.3 Isomorphism

Two graph are isomorphic if there is a correspondence between their vertex sets that

preserves adjacency. Thus G = (V, E) is isomorphic to G′ = (V ′, E′), we denoted by G ∼= G′,

or simply G = G′. If there is a bijection θ : V → V ′ and φ : E(G) → E(G′) such that

ψG(e) = uv if and only if ψG′(φ(e)) = θ(u)θ(v), clearly isomorphic graphs has the same order

and size, usually we do not distinguish between isomorphic graphs, unless we consider graphs

with a distinguished or labeled set of vertices.

Definition 1.4 A graph is said to be self-complementary if G ∼= Gc.

We have below properties about self-complement graphs.

Theorem 1.5 A graph is self-complementary then v ≡ 0, 1mod(4).

Fig 1.10 gives two isomorphic graph.

Fig 1.10 two isomorphic graph

1.4 Incident and adjacent matrix

A graph can be represent as a matrix in the computer science. This section we will give

matrix theory used in graph theory and build a strong connection between matrix and a graph,

first, we start this section with define the adjacency matrix of a graph:

Definition 1.5 The adjacency matrix A(G) of a simple graph G whose vertex set is

{v1, v2, . . . , vn}is a square matrix of order n .Whose entry aij at the place (i, j) is equal to

the numbers of edges incident with the vi, vj, for simple graph that is 0 or 1. We shall write

A = (aij).

Since this matrix is a symmetric matrix, then it has several properties as below:

Theorem 1.6 All eigenvalues of A are real numbers.

Proof. Let λ be an eigenvalue of A and P is the associated eigenvectors of λ. λ̄ and p̄ be the

conjugate of λ and p, respectively, then

λp̄t.p = p̄t(λp) = p̄tAp
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since A is symmetric then

(Āp̄)tp = (λ̄p̄)tp = λ̄p̄tp

λp̄tp = λ̄p̄tp

and p̄tp > 0 so λ is real number.

We can also use the associate law of matrix multiplication and the equation

p̄tAp = λp̄tp

to proof this theorem.

Theorem 1.7 For every symmetric matrix A there is an orthogonal matrix P such that

P tAP = diag(λ1, λ2, . . . , λn), λi are the eigenvalues of A.

Proof. According to theorem 1.5, we know that A has an eigenvector v1, we can as-

sume ‖v1‖ = 1, and by using the Gram-Schmidt procedure we can find an orthogonal basis

B={v1, v2, . . . , vn} with the eigenvector v1 as the first element. Let P1 = {v2, v3, . . . , vn} the

dim(P1) = n− 1 Since v1 is an eigenvector of TA with the eigenvalue λ1, then AP1 also a sym-

metric transformation, by the introduction, (v1, v2, . . . , vn) is a orthogonal basis for A. Then

by the well know theorem of diagonalizable theorem we finish proving our proof.

The diagonalizable theorem is that if a matrix of order n has n different eigenvectors then

this matrix can be diagonalizable.

Definition 1.6 The incident matrix M(G) of graph G is a n ×m matrix M = M(G),

its row is the set of vertices and the columns is the set of edges, and whose entries are given by

mij =

{
1, if vi and ej are incident

0, otherwise

Example

The adjacency matrix and the incident matrix of graph 1.1 are

A(G) =




0 1 0 1

1 0 1 1

0 1 0 1

1 1 1 0




and M(G) =




1 0 0 0 1

1 1 0 0 1

0 1 1 0 0

0 0 1 1 1




respectively.

Definition 1.7 A matrix is said to be totally unimodular if every minors of order k is

0,−1, 1.

In fact, we can easily proofed the incident matrix of a simple graph is totally unimodular

by the induction on the order of the minors of the matrix.
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Theorem 1.8 (Egervary 1931) G is bipartite if and only if M is totally unimodular.

The characteristic polynomial of adjacent matrix of a graph G is defined as the character-

istic polynomial of G, write as ρ(G,λ), sometimes ρ(G) for short.

Definition 1.8 The spectrum of a graph G is the set of numbers which are eigenvalues

of A(G), together with their multiplicities.If the distinct eigenvalues of A(G) are λ0 > λ1

> . . . > λn−1,and their multiplicities are m(λ0),m(λ1), . . . , m(λn−1),then we shall write:

SpecG =

(
λ0 λ1 . . . λn−1

m(λ0) m(λ1) . . . m(λn−1)

)

The spectrum of graph 1.1 is

Spect(G) =

(
−2 0 2

1 2 1

)

Suppose that λ is an eigenvalue of A, then since A is real and symmetric, it follows that

λ is real,and the multiplicity of λ as a root of the equation det(λI − A) = 0 is equal to the

dimension of the space of eigenvectors corresponding to λ. The main question arising is this:how

much information concerning the structure of G is contained in its spectrum, and how can this

information be retrieved from the spectrum?

Theorem 1.9 (Hand-shaking lemma) For a graph
n∑

i=1

d(vi) = 2ε, where ε is size of a

graph.

Proof. Since every edge gives two degrees to a pair of adjacent vertices of a graph, so the

sum of degree is twice of the numbers of E of G.

Corollary 1.1 (Hand-shaking theorem) In any graph the number of odd degree vertices

is even.

Proof. Assume V1, V2 represent the odd degree vertices set and the even degree vertices

set, respectively, by the Theorem 1.9 we have:

∑

v∈V1

d(v) +
∑

v∈V2

d(v) = 2ε

The right side of this equation is even, as to the left side
∑

v∈V2

d(v) is even , so
∑

v∈V1

d(v) must be

a even number, but in which every degree of vertex is odd, so in order to grantee the summation

is even, the number of vertices must be a even number.

If V (G) = (v1, v2, . . . , vn), then we say d(v1), d(v2), . . . , d(vn) is the degree sequence of G.

This sequence must have below property.
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Theorem 1.10 For positive integer sequence d(v1), d(v2), . . . , d(vn) is a degree sequence

of a graph if and only if
n∑

i=1

d(vi) is even.

Proof. Necessity is obvious by the theorem 1.9. Now we prove the sufficient condition, for
n∑

i=1

d(vi) is even by the hand shaking theorem there must have even number of vertex which

has odd degree, then we can construct a graph as below: For the even degree vertex vi we draw

d(vi)/2 loops on vi; for the odd degree vertices vj we draw (d(vj)−1)/2 loops and connect every

two odd degree vertices with an edge, by the hand shaking theorem there are even number of

odd degree vertices, hence, this graph satisfy the condition.

1.5 The spectrum of graph

In this section, we give an expression of characteristic polynomial. We explain the connec-

tion of graph structure and the coefficients of characteristic polynomial.Some of results come

from the matrix theory directly.

Lemma 1.1([7]) Let A = (aij) ∈ Rn×n, then

|λI −A| = λn +
k∑

k=1

(−1)kbkλn−k

where bk(k = 1, 2, . . . , n) is the summation over all principle minors of order k, especially,

b1 = a11 + a22 + . . . + ann, bn = |A|

Proof. Let E = (e1, e2, . . . , en), A = (α1, α2, . . . , αn),where ei and αi are the i− th columns

of unity matrix E and matrix A, respectively, then

|λI −A| = |(λe1 − α1, λe2 − α2, . . . , λen − αn)|

expand this determinant we have:

|λI −A| = λn|(e1, e2, . . . , en)| − λn−1

∑
|e1, . . . , ei−1, αi, ei+1, . . . , en|+ . . .

+(−1)kλn−k
∑

16i16...6ik6n

|(. . . , ai1 , . . . , aik
, . . .)|+ (−1)n|A|

Where

|(. . . , ai1 , . . . , aik
, . . .)|

represent the two column of adjacent matrix of A, the others are columns of unity matrix I.
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Theorem 1.11([4]) Let ρ(G,λ) = |λI−A| = λn +a1λ
n−1 + . . .+an be the characteristic

polynomial of an arbitrary undirected multi-graph G. then

ai
i =

∑

U∈Ui

(−1)p(U) · 2c(U) (i = 1, 2, . . . , n)

We call following graphs“elementary figure”

1. the graph K2,or

2. every graph Cq(q > 1)(loops being included with q = 1)

call a“basic figure”U every graph all of whose components are elementary figures; let p(U), c(U)

be the number of components and the number of circuits contained in U , respectively, and Ui

denote the set of all basic figures contained in G having exactly i vertices.

This theorem may be given the following form:

Define the“contribution”b of an elementary figure E by b(K2) = −1, b(Cq) = (−1)q+1 · 2 and

basic figure U by b(U) =
∏

E∈U

b(E),then (−1)iai =
∑

U∈Ui

b(U).

Proof. Let us first consider the absolute term

an = PG(0) = (−1)n|A| = (−1)n|aik|

According to Leibniz definition of the determinants,

an =
∑

P

(−1)n+I(P )a1i1a2i2 . . . anin

For the sake of simplicity, let us first assume that there are no multiple arcs so that aik = 0 or

1 for all i, k. A term

SP = (−1)n+I(P )a1i1a2i2 . . . anin

of the sum is different from zero if and only if all of the arcs (1, i1), (2, i2), . . . , (n, in) are

contained in G, P may be represented as a product:

P = (1i1)(. . .)(. . .)(. . .)

of disjoint cycles. Evidently, if SP 6= 0, then to each of cycle of P there are corresponds a

cycle in G: thus to P , there corresponds a direct sum of (non-intersecting) cycles containing

all vertices of G,i.e., a linear directed sub-graph L ∈ Ln. Conversely: to each linear directed

subgraph L ∈ Ln there corresponds a permutation P and a term SP = ±1, the sign depending

only on the e(L) of even cycles among all cycles of L:

SP = (−1)n+e(L)
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obviously,

n + e(L) ≡ P (L)(mod2)

hence

an =
∑

P

SP =
∑

L∈Ln

(−1)P (L)

Now, the theorem remains valid even if aik > 1 is allowed:

consider the set of all distinct linear directed subgraph L ∈ Ln connecting the n vertices of G

in exactly the way prescribed by the cycle of a fixed permutation P = (1i1)(. . .)(. . .)(. . .), it is

clear that this set can be obtained by arbitrarily choosing for each k arcs from vertex k to vertex

ik, and doing so in every possible manner; and since for fixed k there are exactly akik
possible

choices, the total number of subgraph so obtained equals a1i1a2i2 . . . anin
. thus the total con-

tribution of all of these subgraphs to the sum
∑

L∈Ln

(−1)P (L) equals to (−1)n+I(P )a1i1a2i2 . . . anin

summation with respect to all permutations P confirms the validity of in general case.

In order to complete the proof of suppose 1 6 i 6 n, (i fixed). It is well know that

(−1)iai equals to the sum of all principal minors of order i of A. Note that there is a (1 − 1)

correspondence between the set of these minors and the set of induced subgraph of G exactly

having i vertices. By applying the result obtained above to each of the
(

n

i

)
minors, and

summing, the valid of theorem is established.

A spanning element graph of G is an elementary sub-graph which contains all vertices of

G then

det(A) =
∑

(−1)p(U)2c(U)

where the summation over all spanning sub-graphs U of G. This theorem is proofed by Harary

in 1962. Here gives its proof:

consider a term

sgn(π)a1q1a2q2 , . . . , anqn

in the expansion of Det(A). The term vanishes, if for some i ∈ {1, 2, . . . , n}, aiqj
= 0; that is

if (vi, vqj ) is not an edge of G. In particular, the term vanish if π fixes any symbol. Thus the

term corresponding to a permutation π is non-zero, then π can be expressed uniquely as the

composition of disjoint cycles of length at least two;Each cycle (ij) of length two corresponds

to the factors aijaji, and signifies a single edge {vi, vj} in G. Each cycle (pqr . . . t) of length

greater than two corresponds to the factors apqaqr . . . atp, and signifies a cycle {vpvq . . . vt} in

G, consequently each nonvanish term in the determinate expansion gives rise to an elementary

sub-graph U of G,with |V (U)| = |V (G)|. The sign of a permutation π is (−1)Ne , where Ne is
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the number of even cycles in π. If there are cl cycles of length l, then the equation
∑

lcl = n

shows that the number No is the number of odd cycles is congruent to n module 2. Hence,

p(U) = n− (No + Ne) ≡ Ne(mod2)

so the sign of π is equal to (−1)p(U).

Theorem 1.12 (Biggs Algebraic graph P.53) Suppose the bipartite graph G has an eigen-

value λ with multiplicity m(λ), then −λ is also an eigenvalue of G with same multiplicity.

Proof. By the theorem 1.11, (−1)iai =
∑

U

(−1)p(U)2c(U). If G is bipartite then G has no

odd cycle, and consequently, no elementary subgraph with an odd number vertices. It follows

that the characteristic polynomial of G has the form

ρ(G,λ) = zn + a2z
n−2 + . . . = zδp(z2)

where δ = 0 or 1, and P is a polynomial function of z. Thus the eigenvalues which are zeros of

ρ, have the required property.

Theorem 1.13 For a simple connected graph G, λmax be the largest eigenvalue of its

characteristic polynomial(spectral radius), then G has no odd cycles if and only if −λmax also

is an eigenvalue of A(G), where A(G) is the adjacent matrix of graph G.

Readers may find the proof of this threom on page 83 Spectra of Graphs Theory and

Application by Dragoš M.Cvetković. etc. Since if G is a bipartite graph if and only if G does

not contain a odd cycle, above theorem gives a very interesting relation between the spectrum

of graphs and its structure.

Corollary 1.2 (Coulson and Rushbrooke 1940) if G is a bi-partite graph V1, V2, then

we arrange the vertices that the adjacency matrix A(G) has form A =
(

0 B

BT 0

)
, if X is an

eigenvector corresponding to the eigenvalue λ, and the X ′ is obtained from X by changing the

signs of the entries corresponding to vertices in V2, then X ′ is an eigenvector corresponding to

the value −λ, it follows that the spectrum of bi-partite graph is symmetric with respect to 0.

Corollary 1.3 The coefficients of the characteristic polynomial of a graph G satisfy:

1. c1 = 0;

2. −c2 is the number of edges of G;

3. −c3 is twice the number of triangles in G;

4. c4 = na − 2nb,na is the number of pairs of disjoint edges in G,and nb is the number of

4−cycles in G.

Proof. For each i ∈ {1, 2, . . . , n}, the number (−1)ici is the sum of those principal minors

of A which have i rows and columns. So we can argue as follows.
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1. Since the diagonal elements of A are all zeros, c1 = 0.

2. A principal minor with two rows and columns, and which has a non-zero entry, must be

the form

∣∣∣∣∣
0 1

1 0

∣∣∣∣∣ there is one such minor for each pair of adjacent vertices of G, and

each has value −1, Hence (−1)2c2 = −|E(G)|, giving the result.

3. There are essentially three possibilities for non-trivial principal minors with three rows

and columns:

∣∣∣∣∣∣∣∣

0 0 1

1 0 0

0 0 1

∣∣∣∣∣∣∣∣
,

∣∣∣∣∣∣∣∣

0 1 1

1 0 0

1 0 0

∣∣∣∣∣∣∣∣
,

∣∣∣∣∣∣∣∣

0 1 1

1 0 0

1 1 0

∣∣∣∣∣∣∣∣
and, of these, the only non-zero one

is the last (whose value is 2). This principal minor corresponds to three mutually

adjacent vertices in G, so we have the required description of c3.

4. since the only elementary graph with four vertices are the C4 and the graph only has

two disjoint edges.

If two or more than two graphs has the same spectrum we call these graphs are co-spectrum,

here give two graphs (Fig 1.11 and Fig 1.12) that has same spectrum.

Fig 1.11 one of the two co-spectrum graphs

Fig 1.12 one of the two co-spectrum graph

Both of the above graphs has same characteristic polynomial: ρ(G,λ) = λ6 − 7λ4 − 4λ3 +

7λ2 + 4λ− 1

Theorem 1.14 (Rowlinson 1987) Let G be a graph with a vertex v1 of degree of 1, and

let v2 be the vertex adjacent to v1, then ρ(G,λ) = λρ(G− v1)− ρ(G− v1 − v2).
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Corollary 1.4 The characteristic polynomial of Pn is ρ(Pn) = λρ(Pn−1)− ρ(Pn−2).

Theorem 1.15 (E.Hellbronner Spectra of graphs p.59) Let G be the graph obtained by

joining the vertex x of the graph G1 to the vertex y of the graph G2 by an edge. Let G′1, G′2 be

the induced subgraph of G1, G2 obtained by deleting the vertex x, y from G1, G2, then

ρ(G,λ) = ρ(G1, λ)ρ(G2, λ)− ρ(G′1, λ)ρ(G′2, λ)

In order to proof this theorem, we need more results from linear algebra, especially, the

Laplacian expansion theorem of determinant. To extend the results of determinant and its

applications in the graph theory, we may give the two important theorems of determinant they

are the Laplacian theorem is given here and the Cauchy-Binet theorem is given in the next

chapter.

Definition 1.9 A minors M of order k is a sub-determinant obtained by selecting k rows

and k columns of determinant D; and the n − k minors left by delete a k-minors is called a

co-minors, denoted as M ′.

Example: Let

D =

∣∣∣∣∣∣∣∣∣∣

1 2 1 4

0 1 2 1

0 0 2 1

0 0 1 3

∣∣∣∣∣∣∣∣∣∣
If we select the first row and the third row, the first column and the third row, then we

obtain a minor of order 2. That is

M ′ =

∣∣∣∣∣
1 1

0 2

∣∣∣∣∣
and a co-minor of order 2 is

M ′ =

∣∣∣∣∣
1 1

0 3

∣∣∣∣∣
Definition 1.10 If i1, i2, . . . , ik and j1, j2, . . . , jk are the selected k rows and k columns,

then A = (−1)(i1+...+ik)+(j1+...+jk)M is called a algebra co-minor of order k.

In the above example

A = (−1)1+3+2+4M ′ = 4

actually, Laplacian expansion theorem is more generalized determinant expand by a row or a

column, now we give the Laplacian theorem.

Theorem 1.16 D = M1A1 + M2A2 + . . . + MsAs, where M and A are all minors and

algebra co-minors of D with order k, s = C(n, k) =
n!

k!(n− k)!
. In other word M is all the

minors of D with order k.
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In the above example, if we choose the first and the second row we obtain 6 minors,

M12 =

∣∣∣∣∣
1 2

0 1

∣∣∣∣∣ ;M13 =

∣∣∣∣∣
1 1

0 2

∣∣∣∣∣ ;M14 =

∣∣∣∣∣
1 4

0 1

∣∣∣∣∣ ;M23 =

∣∣∣∣∣
2 1

1 2

∣∣∣∣∣

M24 =

∣∣∣∣∣
2 4

1 1

∣∣∣∣∣ ;M34 =

∣∣∣∣∣
1 4

2 1

∣∣∣∣∣
associated algebra minors are:

A12 = (−1)1+2+1+2

∣∣∣∣∣
0 0

0 0

∣∣∣∣∣ = 0; A13 = (−1)1+2+1+3

∣∣∣∣∣
0 1

0 3

∣∣∣∣∣ = 0

A14 = (−1)1+2+1+4

∣∣∣∣∣
0 1

0 3

∣∣∣∣∣ = 0; A23 = (−1)1+2+2+3

∣∣∣∣∣
0 2

0 1

∣∣∣∣∣ = 0

A24 = (−1)1+2+2+4

∣∣∣∣∣
1 1

0 2

∣∣∣∣∣ = 0; A34 = (−1)1+2+3+4

∣∣∣∣∣
1 2

0 1

∣∣∣∣∣ = 0

then

D = M12A12 + M13A13 + M14A14 + M23A23 + M24A24 + M34A34 = −7

Proof. By applying the Laplacian development to the characteristic polynomial, we can

easily get the result.

Also, readers may find the proof in book Spectra of Graphs Theory and Application on

page 59.

Corollary 1.5 ∗ For i = 1, 2, . . . , n let Gi be the induced subgraph G− vi, then

ρ′(G,λ) =
n∑

i=1

ρ(Gi)

Proof. Row by row differentiation of ρ(G,λ) = |λIn −A| yields the results.

Corollary 1.6 If all sub-graph Gi are isomorphic with some graph H,then

ρ′(G,λ) = nρ(H, λ)

1.6 The spectrum of several graphs

The complement G of a graph G is the graph with the same vertex set, with two (distinct)

vertices, adjacent in G if and only if these vertices are non-adjacent in G. The direct sum

G1+G2 of graph G1 = (V1, E1) and G2 = (V2, E2), is a graph G = (V, E) for which V = V1∪V2,
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(V1 ∪ V2=Ø), E = E1 ∪ E2. The complete product G1 5G2 of graphs G1 and G2 is the graph

obtained from G1 +G2, by joining the every vertex of G1 with the vertex of G2. The line graph

L(G) of a graph G is constructed by taking the edges of G as vertices of L(G) and joining two

vertices in L(G), whenever the corresponding edges in G have a common vertex.

Theorem 1.17([3]) The incident and adjacent matrixes of G are M and A, and AL is

the adjacent matrix of L(G), then

1. M tM = AL + 2Im;

2. if G is regular of degree k, then MM t = A + kIn.

In [5], Shu Jinlong developed this theorem to semi-regular bipartite graph. That is for V =

V1 + V2, that d(v) = m|v ∈ V1, d(v) = n|v ∈ V2.

Theorem 1.18 L(G) is k-regular if and only if G is regular or semi-regular bipartite

graph.

Lemma 1.2([7]) Let A ∈ Cm×n, B ∈ Cn×m, then λn|(λIm −AB| = λm|λIn −BA|.
Proof. For

(
Im −A

0 In

)(
AB 0

B 0

)
=

(
0 0

B 0

)(
0 0

B BA

)

caculate the determinant of this mutiplication of matrix, according to the propertices of deter-

minant we get the result easily.

Lemma 1.3 let U =

(
λIn −M

0 Im

)
; V =

(
In M

M t λIm

)
, then

λmdet(λIn −MM t) = λndet(λIm −M tM)

Proof. Cause det(UV )=det(V U), by calculating the above determinant we easily get the

formula.

By the theorem 1.17 and lemma 1.2. We easily have the following theorem which is given

by Sachs in 1976.

Theorem 1.19(Sachs 1967) If G is a regular graph of degree k with n vertices and

m = nk/2 edges, then

ρ(L(G), λ) = (λ + 2)m−nρ(G,λ + 2− k)

Proof. For ρ(L(G), λ) = det(λIm−AL), by the theorem 1.17 and the lemma 1.3, we obtain

this theorem easily.
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We give an example by using this theorem, the line graph of Kn sometimes is called triangle

graph, denoted as ∆t. Since the spectrum of Kn is

SpecKn =

(
n− 1 −1

1 n− 1

)

then

Spec∆t =

(
2t− 4 t− 4 −2

1 t− 1 t(t− 3)/2

)

Theorem 1.20 If λ is an eigenvalue of L(G), then λ > −2.

Proof. For any vector z, the inner product ‖Mz‖2 = [Mz, Mz] = MztMz = ztM tMz =

zt(AL+2Im)z, since MT M is a non negative symmetric matrix, then all eigenvalues are positive

and the theorem is hold.

Theorem 1.21 Let G1 5 G2 be the complete product of two simple graphs, then the

complementary of this operation has following properties,

G1 5G2 = G1 + G2

Theorem 1.22 Let G1 + G2 be the union of G1 and G2, then

ρ(G1 + G2, λ) = ρ(G1, λ) · ρ(G2, λ)

Theorem 1.23 Let ρ(G1 5G2) be the complete product of two simple graphs G1 and

G2, then

ρ(G1 5G2, λ) = (−1)n2ρ(G1, λ)ρ(G2,−λ− 1) + (−1)n1ρ(G2, λ)ρ(G1,−λ− 1)

−(−1)n1+n2ρ(G1,−λ− 1)ρ(G2,−λ− 1)

If G is a k-regular graph , then the polynomial ρ(G,λ) and ρ(G1 5G2, λ) are given by the

following theorem.

Theorem 1.24(Sachs 1962) If G is connected and regular of k, then ρ(G,λ) =

(−1)n λ− n + k + 1
λ + k + 1

ρ(G,−λ− 1).

This is a very useful tool to calculate the characteristic polynomial of certain type of

graphs. We give an example below:

The graph obtained by deleting s disjoint edges from K2s is called cocktail party graph,

denoted as H2s.

ρ(H2s) = (−1)2s λ + 2− 2s

λ + 2
ρ(sP2, λ)
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since the complement graph of a cocktail party graph is s disjoint edges K2, and

ρ(P2, λ) = (λ + 1)(λ− 1)

then

ρ(H2s) = (−1)2s λ + 2− 2s

λ + 2
[−λ(−λ− 2)]s

Simplify this equation, We have

ρ(H2s) =
λ + 2− 2s

λ + 2
[(−λ)(−λ− 2)]s

The spectrum of P2 is

SpecP2 =

(
1 −1

1 1

)

then the spectrum of H2s is

SpecH2s =

(
2s− 2 0 −2

1 s s− 1

)

If G1 is a r1 regular graph and G2 is a r2 regular graph, then the characteristic polynomial of

the complete product of these two graphs is given by the following theorem.

Theorem 1.25 The characteristic polynomial of complete product of two graphs is,

ρ(G1 5G2, λ) =
ρ(G1, λ)ρ(G2, λ)
(λ− r1)(λ− r2)

[(λ− r1)(λ− r2)− n1n2].

Corollary 1.7 Suppose that a graph has two vertices vi and vj has same neighbor vertices

Γ , then the vector X whose only non-zero entries are xi = 1 and xj = −1 is an eigenvector

of the adjacency matrix with eigenvalue 0, if Γ has r vertices, then the multiplicity is at least

r − 1.

Theorem 1.26 If the spectrum of the graph G contains an eigenvalue λ0 with multiplicity

p > 1, then the spectrum of the complementary graph G contains an eigenvalue −λ0 − 1 with

multiplicity q,where p− 1 6 q 6 p + 1.

1.7 Results from matrix theory

In this section, We study several characteristic polynomials of special graphs. We also

study the Rayleigh quotient of vectors and the largest minimal eigenvalue of matrix. In the end

of this section, we study the properties of circular matrix.

1. Empty graph G with n vertices its characteristic polynomial, ρ(G,λ) = λn.

2. ρ(Kn, λ) = (λ− n + 1)(λ + 1)n−1.
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3. each component of a regular graph of degree 1 is isomorphic with graph K2,then k copy

of K2 is ρ(Kn, λ) = (λ2 − 1)k.

4. ρ(Kn1,n2 , λ) = (λ2 − n1n2)λn1+n2−2.

5. ρ(K1,n, λ) = (λ2 − n)λn−1.

6. ρ(Pn, λ) =
n/2∑

k=0

(−1)k

(
n− k

k

)
λn−2k = Un(λ/2). Where

Un(x) =
sin[(n + 1) arccos(x)]√

1− x2

is the Chebyshev polynomial of the second.

7. ρ(Cn, λ) = −2 +
[n/2]∑

k=0

(−1)k n

n− k

(
n− k

k

)
λn−2k = 2 cos(n arccos x/2)− 2

8. ρ(Kn
k ,..., n

k ,λ) = λn−k(λ +
n

k
− n)(λ +

n

k
)k−1

In order to take a review of calculating the determinant, we give proof for 2 and 5.

Proof. Since the characteristic polynomial of Kn is:

ρ(Kn, λ) =

∣∣∣∣∣∣∣∣∣∣∣

λ −1 . . . −1

−1 λ . . . −1
...

...
. . .

...

−1 −1 . . . λ

∣∣∣∣∣∣∣∣∣∣∣

by the properties of determinant, we add all the other rows to the first row and take the common

factor λ− (n− 1) then

ρ(Kn, λ) = (λ− n + 1)

∣∣∣∣∣∣∣∣∣∣∣

1 1 . . . 1

−1 λ . . . −1
...

...
. . .

...

−1 −1 . . . λ

∣∣∣∣∣∣∣∣∣∣∣

add the first row to each other rows, finally, we have formula 2.

Proof. Since the characteristic polynomial of K1,n is:

ρ(K1,n, λ) =

∣∣∣∣∣∣∣∣∣∣∣

λ −1 −1 . . . −1

−1 λ 0 . . . 0
...

...
...

. . .
...

−1 0 0 . . . λ

∣∣∣∣∣∣∣∣∣∣∣
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multiple the first row by 1/λ then add to every other rows, then expand this new determinant

by the first row then we get a symmetric determinant of the diagonal entries are λ−1/λ and all

other entries are −1/λ. With the skill to calculate the symmetric determinant, we can easily

get the formula 5.

Some spectrum of certain graphs:

1. SpecKn =

(
n− 1 −1

1 n− 1

)
;

2. Spec(Ka,b) =

( √
ab 0 −

√
ab

1 a + b− 2 1

)
;

3. SpecPn =

(
2 cos π/(n + 1) 2 cos 2π/(n + 1) . . . 2 cos nπ/(n + 1)

1 1 . . . 1

)
;

4. SpecCn =

(
2 2 cos 2π/n . . . 2 cos (n− 1)π/n

1 2 . . . 2

)
(n is odd);

5. SpecCn =

(
2 2 cos 2π/n . . . 2 cos (n− 2)π/n −2

1 2 . . . 2 1

)
(n is even);

especially,

SpecP4 =




1 +
√

5
2

−1 +
√

5
2

1−√5
2

−1−√5
2

1 1 1 1




SpecC10 =




2
1 +

√
5

2
−1 +

√
5

2
1−√5

2
−1−√5

2
−2

1 2 2 2 2 1




Sometimes we call K1,n is a star. According to the expression of complete bipartite graph’s

characteristic polynomial, we can easily have:

Spec(K1,n) =

( √
n 0 −√n

1 n− 1 1

)

Spectrum of peterson graph is SpecO3 =

(
3 1 −2

1 5 4

)

We cite two important result from linear algebra. the proposition 1.1 is the relation between

the coefficients of the characteristic polynomial of a matrix and its principle minors; the second

result is about the circular matrix.
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Proposition 1.1 The coefficient of the characteristic ai equals the summation over all

principal minors of order i multiple by (−1)n−i.

An n × n matrix is said to be cyclic matrix if its i − th row is obtained by a cyclic shift

i− 1 steps of the first row, that is the cyclic matrix is determined by the first row.

w =




0 1 0 · · · 0 0

0 0 1 · · · 0 0
...

...
...

. . .
...

...

0 0 0 · · · 0 1

1 0 0 · · · 0 0




; w2 =




0 0 1 · · · 0 0

0 0 0 · · · 0 0
...

...
...

. . .
...

...

1 0 0 · · · 0 0

0 1 0 · · · 0 0




s =




s1 s2 s3 · · · sn−1 sn

sn s1 s2 · · · sn−2 sn−1

...
...

...
. . .

...
...

s3 s4 s5 · · · s1 s2

s2 s3 s4 · · · sn s1




; s =
n∑

j=1

sjw
j−1

Since the eigenvalues of w is 1, ω, ω2, ωn−1, where ω = exp(2πi/n) it follows that the

eigenvalues of s are λr =
n∑

j=1

sjω
(j−1)r, r = 0, 1, . . . , n− 1.

Since the adjacent matrix of a cycle Cn is a circular matrix generated by the first row

r1 = [0, 1, 0, · · · , 1]T, then we can easily obtain the spectrum of Cn by the above properties of

circular matrix.

1.8 About the largest zero of characteristic
polynomials

Lemma 1.4 If the distinct eigenvalues of A(G) are λ1 > λ2 > . . . > λn then λ1 6
√

2ε(n− 1)
n

.

Proof. By the lemma 1.1 and the summation of the eigenvalues of a matrix is −a1 the

coefficient of the characteristic polynomial. We have:
n∑

i=1

λi = −c1 = 0

∑

i 6=j

λiλj = −ε



Chapter 1 Basic concepts 23

n∑

i=1

λ2
i = (

n∑

i=1

λi)2 − 2
∑

i 6=j

λiλj = −2ε

λ1 = −(λ2 + λ3 + . . . + λn)

λ2
1 = 2ε− (λ2

2 + . . . + λ2
n)

By Cauchy-Schwaze inequality we have:

|λ2 + λ3 + . . . + λn| 6
√

λ2
2 + λ2

3 + . . . + λ2
n

√
n− 1

λ2
1 6 (2ε− λ2

1)(n− 1)

λ1 6
√

(2ε− λ2
1)(n− 1)

In fact, this theorem also can be proved by the corollary 2.2 and the matrix theorem. An-

other bound of the same type is λ1 6
√

2ε− ν + 1 the equation hold if and only if a component

is a complete graph or a star and other components are k2 that are isolated edges. ( East China

Normal University Hongyuan 1988). If graph G have m edges and l isolated vertices, then

λ1 6
√

2ε− ν + l + 1. (SHU Jin-long in 2000). Vladimir Nikiforov, Eigenvalues and degree

deviation in graphs, linear Algebra and Application 414(2006)347− 360 gives another bound of

λ1, let s(G) =
∑

v∈V (G)

|d(v)− 2m/n|, then

1. s2/2n2
√

2m 6 λ1 − 2m/n 6
√

s(G);

2. λk(G) + λn−k+2(Gc) > −1 + 2
√

2s, for all 2 6 k 6 n;

3. λn + λn(Gc) 6 −1− s2/2n3.

Theorem 1.27 Let G be a regular graph of degree k, then

1. k is an eigenvalue of G;

2. If G is connected, then the multiplicity of k is 1;

3. For any eigenvalue λ of G, We have | λ |6 k.

Proof. 1. If u = (1, 1, . . . , 1)t, A is the adjacent matrix of G, then we have Au = ku, since

there are k 1’s in each row, thus k is an eigenvalue of G.

2. Let x = (x1, x2, . . . , x
t
n) denotes an non-zero vector for which Ax = kx and suppose

that xj is an entry of x with the largest absolute value. Since (Ax)j = kxj , we have

Σxi = kxj , where Σ denotes summation over those k vertices vi which are adjacent to

all those vertices are adjacent to vj , by the maximal property of xj . It follows that

xi = xj , for all those vertices if G is connected we may proceed successively in this way,

eventually show that all entries of x are equal, thus x is a multiple of u and the space

of eigenvalue associated with the eigenvalue k has dimension 1.
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3. Suppose that Ay = λy, y 6= 0 and let yj denote an entry of y which is largest in absolute

value. By the same argument as in (2), we have Σyi = λyj and so

| λ || yj |=| Σyi |6 Σ | yj |6 k | yj |

thus | λ |6 k, as required.

We need a useful technique from matrix theory.

Theorem 1.28 (Schur) For any matrix A of order n there exist a U matrix of order n

and an upper triangle matrix R, that

UHAU = R or A = URUH

hold. Where the diagonal entries are the eigenvalues of A.

Corollary 1.8 If A is a Hermit matrix, then A ∼ Λ, the diagonal entries are the eigen-

values of matrix A.

Let (x, y) denotes the inner product of the column vectors x, y. For any real n×n symmetric

matrix X and any real non-zero n × 1 column vector z, the number (z, Xz)/(z, z) is know as

the Rayleigh quotient, and written R(X, z) in matrix theory it is proved that

λmax(X) > R(X, z) > λmin(X) for all z 6= 0

a result which has important applications in graph theory. Here, we give a simple proof.

Proof. since X is a real symmetric matrix, then there is a matrix UT = U−1 that UTXU =

diag(λ1, . . . , λn) holds, suppose that λ1 > λ2 > . . . > λn, now

λ1I −X = UT(λ1I − diag(λ1, . . . , λn))U > 0

cause λ1 = max{λ1, . . . , λn} then λ1 − λi > 0, i ∈ (1, . . . , n). λ1I > X. The other inequality

prove in similar way.

Theorem 1.29 Suppose that A is a Hermit matrix of order n, eigenvalues λ1 > . . . > λn,

then

1. R(kx) = R(x), k ∈ C, k 6= 0;

2. λn 6 R(x) 6 λ1;

3. λ1 = maxR(x), λn = minR(x), x 6= 0.

Theorem 1.30 Let x1, x2, . . . , xn be the eigenvectors correspond to eigenvalue λ1, λ2, . . . ,

λn, respectively, and V j
i = Span{xi, xi+1, . . . , xj}, then

λi = maxR(x), λj = minR(x), x ∈ V j
i , x 6= 0
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Proof. ∀x ∈ V j
i and x 6= 0, that x = aixi + . . . + ajxj , then

λj 6 R(X) =
|ai|2λi + |ai+1|2λi+1 + . . . + |λj |2λj

|ai|2 + |ai+1|2 + . . . + |aj |2 6 λi

especially. If x = xi, then R(x) = λi, if x = xj , then R(x) = λj . So the theorem holds.

Theorem 1.31 Suppose that A and E are the Hermit matrices of order n, B = A + E,

and the eigenvalues of A,B and E are λ1 > . . . > λn, µ1 > . . . > µn and ε1 > . . . > εn, then

λi + εn 6 µi 6 λi + ε1, i = 1, 2, . . . , n

Proposition 1.2 1. If H is an induced subgraph of G, then

λmax(H) 6 λmax(G);λmin(H) > λmin(G)

2. If the greatest and least degrees among the vertices of G are dmax(G), dmin(G), and the

average degree is dave(G), then

dmax(G) > λmax(G) > dave(G) > dmin(G)

Proof. 1. We may suppose that the vertices of G are labeled so that the adjacency matrix

of G has a leading principal minors A0, which is the adjacency matrix of subgraph H. Let z

be chosen such that A0z0 = λmaxz0 and (z0, z0) = 1. Furthermore, let z be column vector with

|V (H)| rows formed by adding zero entries to vector z0. Then

λmax(A0) = R(A0, z0) = R(A, z) 6 λ(A)

that is,

λmax(H) 6 λmax(G)

The other inequality is proved similarly.

2. Let u be the column vector each of whose entries are +1, then if n = |V (G)| and di is

the degree of the vertex vi, we have

R(A, u) = (
∑

i,j

aij)/n =
∑

i

di = dave

the Rayleigh quotient R(A, u) is at most λmax(A) that is λmax(G), and it is clear that the

average degree is not less than the minimum degree. Hence

λmax(G) > dave > dmin(G)
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Finally, let X be an eigenvector corresponding to the eigenvalue λ0 = λmax(G), and let xj

be a largest positive entry of X. By an argument similar to the used in (1) we have

λ0xj = (λ0X)j = (AX)j =
∑

xi 6 djxj 6 dmax(G)xj

where the sum
∑

is take over the vertices vi adjacent to vj , Thus λ0 6 dmax(G).

Proposition 1.3([3]) Let X be a symmetric matrix, partitioned in the form X =(
P Q

Qt R

)
, where P and R are square symmetric matrix, then

λmax(X) + λmin(X) 6 λmax(P ) + λmax(R)

Proof. Let λ = λmin(X) and take an arbitrary ε > 0, then X ′ = X − (λ− ε)I is a positive

definite symmetric matrix, partitioned in the same way as X, with

P ′ = P − (λ− ε)I, Q′ = Q, R′ = R− (λ− ε)I

By appling the method of Rayleigh quotient to matrix X ′, it can be show that

λmax(X ′) 6 λmax(P ′) + λmax(R′)

Thus, in terms of X, P and R, we have

λmax(X)− (λ− ε) 6 λmax(P )− (λ− ε) + λmax(R)− (λ− ε)

and since the arbituary of ε and λ = λmax(X), we have the result.

Theorem 1.32 Let A be a real symmetric matrix, partitioned into t2sub-matrix Aij in

such that a way that the row and the column partitioned in the same, in other words, each

diagonal sub-matrix Aii are square, then

λmax(A) + (t− 1)λmin(A) 6
t∑

i=1

λmax(Aii)

Proof. We proof this result by induction on t. It is true when t = 2, by the proposition

1.3 Suppose that it is true when t = T − 1, then we show that is hold when t = T . Let A be

partitioned into t2 sub-matrixes,in the manner stated, B be the matrix with the last row and

the last column deleted. By the proposition1.30,

λmax(A) + λmin(A) 6 λmax(B) + λmax(ATT )

and by the induction hypothesis,

λmax(B) + (T − 2)λmin(B) 6
T−1∑

i=1

λmax(Aii)
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now λmin(B) > λmin(A), thus adding the two inequalities,we have the result for t = T , and the

general result follows by induction.

Let v1, v2, . . . , vn be orthogonal unit eigenvectors to the eigenvalues of Laplacian matrix Q

of G, then

uk = min
‖x‖=1,x⊥Span{v1,...,vk−1}

〈Qx, x〉;

λk = min
M⊂<n,dim(M)=k−1

{ max
‖x‖=1,x⊥(M)

〈Ax, x〉}

this result we can find in R.Horn, C.Johnson, Matrix Analysis, Cambridge University Press,

Cambridge, 1985, p:561.

Theorem 1.33 Let λ1 > λ2 > . . . > λn be the eigenvalues of adjacency matrix A,

and 0 = u1 6 u2 6 . . . 6 un, then δ(G) 6 λk + uk 6 ∆, and λk(G) + λn−k+2(Gc) >
δ(G)−∆(G)− 1, for 2 6 k 6 n.

Proof. Let y be a vector associate with the largest eigenvalue of A and ‖y‖ = 1 and also

y ⊥ Span{v1, . . . , vk−1}. Let y = (y1, . . . , yn), we find that

uk = 〈Qy, y〉 =
∑

v∈V (G)

d(v)y2
v − 〈Ay, y〉

6 ∆(G)− max
‖x‖=1,x⊥Span{v1,...,vk−1}

〈Ax, x〉

6 min
M⊂<n,dim(M)=k−1

{ max
‖x‖=1,x⊥(M)

〈Ax, x〉}

= ∆(G)− λk(G)

As to the second inequality, it is well know that uk(G) + un−k+2(Gc) = n for all 2 6 k 6 n,

n + λk + λn−k+2(Gc)

subsitude uk(G) + un−k+2(Gc) = n into above equation we have

> δ(G) + δ(Gc) > δ(G) + n− 1−∆(G)

simplify it we will get the result.

Theorem 1.34 Let λ2(G) be the second largest zero of G and λn(Gc) be the smallest

zero of Gc, then λ2 + λn(Gc) 6 −1.

Readers can find Vladimir Nikiforov, Eigenvalues and extremal degrees of graphs,

Linear Algebra and its Applications 419(2006)735− 738.

Theorem 1.35 [Courant-weyl inequlity] Let λ1 > λ2 > . . . > λn be the eigenvalues of a

symmetric real matrix, if A,B and C are all the symmetric real matrixes and C = A + B, then

λn−j−i(C) > λn−i(A) + λn−j(B).
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1.9 Spectrum radius

Suppose that A = (aij) ∈ Rm×n, if aij > 0, i = 1, 2, . . . , m; j = 1, 2, . . . , n, then we call

A is a non-negative matrix, write as A > 0. If aij > 0, we call A is positive matrix, write as

A > 0. A transpose matrix P =
∏

E(i, j), that is a serious elementary operation of the first

type.

Definition 1.11 A matrix is reducible if there is a transpose matrix such that

PAPT =

(
A11 A12

0 A22

)

where A11 is a square matrix of order r, A22 is a square matrix of order n − r. Otherwise, A

is irreducible.

Non-negative matrix has two types, one is reducible matrix and another is irreducible

matrix. In 1907, Perron proved an important theorem about the relation between the positive

matrix’s largest eigenvalue and the correspondence eigenvector. We call the largest eigenvalue

is spectrum radius (λ1) and the eigenvector correspond to largest value is Perron vector, then

we have several theorems below:

Theorem 1.36(Perron) Suppose that A is a positive matrix, then

1. λ1 > 0, and the Perron vector x > 0, x ∈ Rn;

2. all other eigenvalue |λi| < λ1;

3. λ1 has multiplicity one.

Theorem 1.37(Perron-Frobenius) If a connected graph G with at least two vertices,then

1. λ1 > 0,with multiplicity l;

2. there exists a unique positive unit eigenvector corresponding to λ1;

3. all other eigenvalue |λi| < λ1;

4. deleting any edge from G, λ1 will decrease.

Theorem 1.38([20]) Let λ1, λ2, . . . , λn be the eigenvalues of G, and the u1, u2, . . . , un−1

be eigenvalues of G− u,then

λ1 > u1 > λ2 > u2 > . . . > un−1 > λn

Theorem 1.39([21]) Let G be a connected graph and λ1 be the spectral radius of A(G),

u and v be two vertices of G. Suppose that {v1, v2, . . . , vs} ∈ N(v)\N(u), (1 6 s 6 d(v))

and x = (x1, x2, . . . , xn) is the Perron vector of A(G), where xi corresponds to the vertex

vi(1 6 i 6 n). Let G∗ be the graph obtained by deleting the edges (vvi) and adding the edges

uvi, (1 6 i 6 s), then λ1(G) < λ1(G∗).
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Theorem 1.39 indicates that the spectral radius is increase when the graph becomes more

concentrate, the star has the largest eigenvalue, that is
√

n− 1 and the path has the smallest

eigenvalue, that is 2 cos
π

n + 1
, and for matching polynomial hold as well. Reads may refer to

Bolian Liu, 2005, Combinatorial Matrix Theory.

Exercise

In this book, if we not specially inform you, take all graphs as simple connected graphs.

1. If G is a connected simple graph of order n, then ε 6
(

n

2

)
.

2. under the condition of exercise 1’s condition ε 6
(

n

2

)
if and only if G ∼= Kn.

3. If ε(K(m,n)) = mn.

4. If G is a connected simple graph of order n, then ε 6 n2/4.

5. We say a graph is self-complement, write as G ∼= Gc. If G is self-complement then

n ≡ 0, 1(mod4).

6.♣ If G is a simple graph and the eigenvalues of A(G) are different, then the automorphism

group of G is commutative.

7. Every simple graph of order n is isomorphism to a sub graph of Kn.

8. Every subgraph of bipartite graph is bipartite graph.

9. ♣ G is a simple graph, for any integer number n for 1 < n < ν − 1, if ν > 4 and all

induced subgraph of order n has same numbers of edges, then G ∼= Kν or G ∼= KC
ν .

10. Prove that δ 6 2ε/ν 6 ∆.

11. If G is k-regular bipartite graph (k > 0) have an vertex departing (X, Y ), then |X| =
|Y |.

12. Let λ1 > λ2 > . . . > λn be the eigenvalues of A(G), then λ1 6
√

2ε(n− 1)/n.

13. For a simple graph, positive integer sequence (8, 6, 5, 4, 3, 2, 2) and (6, 6, 5, 4, 3, 3, 1) are

not a graph’s degree sequence.

14. For a simple graph, if A(G) has n different eigenvalues, then the automorphisms group

Γ (G) is Abelian.

Group Project

For any simple graph G and a positive integral m, (m 6 n), n is the order of the graph,

there exist a m partite spanning subgraph H, which satisfy the inequality

(1− 1
m

)ε(G) 6 ε(H) 6 Tm,n

where Tm,n is the Turan graph, how to find this spanning bipartite graph?


