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Some large numbers:

million 106
billion 10°
trillion 1012
quadrillion 1015
quintillion 1018
googol 10100
googolplex 1010'%

Note: these values assume the US bil-
lion, trillion, etc, which are now in gen-
eral use.

LStill more hopeless would be the task
of measuring where each molecule is
and how fast it is moving in its initial
state!

Introduction

The subject of thermal physics involves studying assemblies of large
numbers of atoms. As we will see, it is the large numbers involved in
macroscopic systems that allow us to treat some of their properties in a
statistical fashion. What do we mean by a large number?

Large numbers turn up in many spheres of life. A book might sell a
million (10°) copies (probably not this one), the Earth’s population is (at
the time of writing) between six and seven billion people (6-7x10%), and
the US national debt is currently around ten trillion dollars (103 US$).
But even these large numbers pale into insignificance compared with
the numbers involved in thermal physics. The number of atoms in an
average-sized piece of matter is usually ten to the power of twenty-
something, and this puts extreme limits on what sort of calculations
we can make to understand them.

Example 1.1

One kilogramme of nitrogen gas contains approximately 2 x 1025 N,
molecules. Let us see how easy it would be to make predictions about
the motion of the molecules in this amount of gas. In one year, there are
about 3.2x107 seconds, so that a 3 GHz personal computer can count
molecules at a rate of roughly 10'7 year~!, if it counts one molecule ev-
ery computer clock cycle. Therefore it would take about 0.2 billion years
just for this computer to count all the molecules in one kilogramme of
nitrogen gas (a time that is roughly a few percent of the age of the Uni-
verse!). Counting the molecules is a computationally simpler task than
calculating all their movements and collisions with each other. Therefore
modelling this quantity of matter by following each and every particle
is a hopeless task.!

Hence, to make progress in thermal physics it is necessary to make
approximations and deal with the statistical properties of molecules, i.e.,
to study how they behave on average. Chapter 3 therefore contains a
discussion of probability and statistical methods, which are foundational
for understanding thermal physics. In this chapter, we will briefly re-
view the definition of a mole (which will be used throughout the book),
consider why very big numbers arise from combinatorial problems in
thermal physics and introduce the thermodynamic limit and the ideal
gas equation.



1.1 What is a mole?

A mole is, of course, a small burrowing animal, but also a name (first
coined about a century ago from the German “Molekiil” [molecule])
representing a certain numerical quantity of stuff. It functions in the
same way as the word “dozen”, which describes a certain number of
eggs (12), or “score”, which describes a certain number of years (20).
It might be easier if we could use the word dozen when describing a
certain number of atoms, but a dozen atoms is not many (unless you are
building a quantum computer) and since a million, a billion, and even a
quadrillion are also too small to be useful, we have ended up with using
an even bigger number. Unfortunately, for historical reasons, it isn’t a
power of ten.

The mole

A mole is defined as the quantity of matter that contains as many
objects (for example, atoms, molecules, formula units, or ions) as the
number of atoms in exactly 12g (=0.012kg) of 12C.

A mole is also approzimately the quantity of matter that contains as
many objects (for example, atoms, molecules, formula units, ions) as
the number of atoms in exactly 1g (=0.001kg) of H, but carbon was
chosen as a more convenient international standard since solids are easier
to weigh accurately.

A mole of atoms is equivalent to an Avogadro number N4 of atoms.
The Avogadro number, expressed to four significant figures, is

Nj = 6.022 x 1023, (1.1)

Example 1.2

e 1 mole of carbon is 6.022 x 1023 atoms of carbon.
o 1 mole of benzene is 6.022 x 1023 molecules of benzene.
e 1 mole of NaCl contains 6.022 x 10?3 NaCl formula units, etc.

The Avogadro number is an exceedingly large number: a mole of eggs
would make an omelette with about half the mass of the Moon!

The molar mass of a substance is the mass of one mole of the sub-
stance. Thus the molar mass of carbon is 12 g, but the molar mass of
water is close to 18 g (because the mass of a water molecule is about %
times larger than the mass of a carbon atom). The mass m of a single
molecule or atom is therefore the molar mass of that substance divided
by the Avogadro number. Equivalently:

molar mass = mNjy. (1.2)
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One can write N as 6.022x1023 mol—!
as a reminder of its definition, but Np
is dimensionless, as are moles. They
are both numbers. By the same logic,
one would have to define the ‘eggbox

number’ as 12 dozen—1.
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2An impulse is the product of force and
a time interval. The impulse is equal to
the change of momentum.

3.0
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Fig. 1.1 Graphs of the force on a roof
as a function of time due to falling rain
drops.

1.2 The thermodynamic limit

In this section, we will explain how the large numbers of molecules in
a typical thermodynamic system mean that it is possible to deal with
average quantities. Our explanation proceeds using an analogy: imagine
that you are sitting inside a tiny hut with a flat roof. It is raining
outside, and you can hear the occasional raindrop striking the roof. The
raindrops arrive randomly, so sometimes two arrive close together, but
sometimes there is quite a long gap between raindrops. Each raindrop
transfers its momentum to the roof and exerts an impulse? on it. If you
knew the mass and terminal velocity of a raindrop, you could estimate
the force on the roof of the hut. The force as a function of time would
look like that shown in Fig. 1.1(a), each little blip corresponding to the
impulse from one raindrop.

Now imagine that you are sitting inside a much bigger hut with a flat
roof a thousand times the area of the first roof. Many more raindrops
will now be falling on the larger roof area and the force as a function of
time would look like that shown in Fig. 1.1(b). Now scale up the area
of the flat roof by a further factor of one hundred and the force would
look like that shown in Fig. 1.1(c). Notice two key things about these
graphs:

(1) The force, on average, gets bigger as the area of the roof gets
bigger. This is not surprising because a bigger roof catches more
raindrops.

(2) The fluctuations in the force get smoothed out and the force looks
like it stays much closer to its average value. In fact, the fluctua-
tions are still big but, as the area of the roof increases, they grow
more slowly than the average force does.

The force grows with area, so it is useful to consider the pressure, which

is defined as
force

pressure = (1.3)

area
The average pressure due to the falling raindrops will not change as the
area of the roof increases, but the fluctuations in the pressure will de-
crease. In fact, we can completely ignore the fluctuations in the pressure
in the limit that the area of the roof grows to infinity. This is precisely
analogous to the limit we refer to as the thermodynamic limit.
Consider now the molecules of a gas which are bouncing around in a
container. Each time the molecules bounce off the walls of the container,
they exert an impulse on the walls. The net effect of all these impulses is
a pressure, a force per unit area, exerted on the walls of the container. If
the container were very small, we would have to worry about fluctuations
in the pressure (the random arrival of individual molecules on the wall,
much like the raindrops in Fig. 1.1(a)). However, in most cases that one
meets, the number of molecules in a container of gas is extremely large,
so these fluctuations can be ignored and the pressure of the gas appears
to be completely uniform. Again, our description of the pressure of this



system can be said to be “in the thermodynamic limit”, where we have
let the number of molecules be regarded as tending to infinity in such a
way that the density of the gas is a constant.

Suppose that the container of gas has volume V, that the temperature
is T, the pressure is p, and the kinetic energy of all the gas molecules adds
up to U. Imagine slicing the container of gas in half with an imaginary
plane, and now just focus your attention on the gas on one side of the
plane. The volume of this half of the gas, let’s call it V*, is by definition
half that of the original container, i.e.,

\%
V= —. 14
The kinetic energy of this half of the gas, let’s call it U*, is clearly half
that of the total kinetic energy, i.e.,
U
Ur=—. 1.5
- (15)
However, the pressure p* and the temperature T™* of this half of the gas
are the same as for the whole container of gas, so that

p* = p, (1.6)
™ = T (1.7)

Variables which scale with the system size, like V and U, are called
extensive variables. Those which are independent of system size, like
p and T, are called intensive variables.

Thermal physics evolved in various stages and has left us with various
approaches to the subject:

e The subject of classical thermodynamics deals with macro-
scopic properties, such as pressure, volume, and temperature, with-
out worrying about the underlying microscopic physics. It applies
to systems that are sufficiently large that microscopic fluctuations
can be ignored, and it does not assume that there is an underlying
atomic structure to matter.

e The kinetic theory of gases tries to determine the properties of
gases by considering probability distributions associated with the
motions of individual molecules. This was initially somewhat con-
troversial since the existence of atoms and molecules was doubted
by many until the late nineteenth and early twentieth centuries.

e The realization that atoms and molecules exist led to the devel-
opment of statistical mechanics. Rather than starting with de-
scriptions of macroscopic properties (as in thermodynamics) this
approach begins with trying to describe the individual microscopic
states of a system and then uses statistical methods to derive the
macroscopic properties from them. This approach received an
additional impetus with the development of quantum theory,
which showed explicitly how to describe the microscopic quantum

1.2 The thermodynamic limit 5
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3Note that none of these scientists ex-
pressed temperature in this way, since
the kelvin scale and absolute zero had
yet to be invented. For example, Gay-
Lussac found merely that V' = Vp(1 +
oT), where Vp and a are constants and
T is temperature in his scale.

41t takes the numerical value kg =
1.3807x10~23 JK—1. We will meet this
constant again in eqn 4.7.

states of different systems. The thermodynamic behaviour of a
system is then asymptotically approximated by the results of sta-
tistical mechanics in the thermodynamic limit, i.e., as the number
of particles tends to infinity (with intensive quantities such as pres-
sure and density remaining finite).

In the next section, we will state the ideal gas law, which was first
found experimentally but can be deduced from the kinetic theory of
gases (see Chapter 6).

1.3 The ideal gas

Experiments on gases show that the pressure p of a volume V of gas
depends on its temperature 7. For example, a fixed amount of gas at
constant temperature obeys

px1/V, (1.8)

a result which is known as Boyle’s law (sometimes as the Boyle—
Mariotte law); it was discovered experimentally by Robert Boyle (1627—
1691) in 1662 and independently by Edmé Mariotte (1620-1684) in 1676.
At constant pressure, the gas also obeys

VT, (1.9)

where T is measured in kelvin. This is known as Charles’ law and was
discovered experimentally, in a crude fashion, by Jacques Charles (1746—
1823) in 1787, and more completely by Joseph Louis Gay-Lussac (1778
1850) in 1802, though their work was partly anticipated by Guillaume
Amontons (1663-1705) in 1699, who also noticed that a fixed volume of
gas obeys

(1.10)

a result that Gay-Lussac himself found independently in 1809 and is
often known as Gay-Lussac’s law.3
These three empirical laws can be combined to give

pV x T.

pox T,

(1.11)

It turns out that, if there are NV molecules in the gas, this finding can

be expressed as follows:
pV = NkgT.

This is known as the ideal gas equation, and the constant kg is known
as the Boltzmann constant.* We now make some comments about the
ideal gas equation.

(1.12)

e We have stated this law purely as an empirical law, observed in
experiment. We will derive it from first principles using the kinetic
theory of gases in Chapter 6. This theory assumes that a gas can
be modelled as a collection of individual tiny particles which can
bounce off the walls of the container, and each other (see Fig. 1.2).



e Why do we call it “ideal”? The microscopic justification that we
will present in Chapter 6 proceeds under various assumptions: (i)
we assume that there are no intermolecular forces, so that the
molecules are not attracted to each other; (ii) we assume that
molecules are point-like and have zero size. These are idealized
assumptions and so we do not expect the ideal gas model to de-
scribe real gases under all circumstances. However, it does have
the virtue of simplicity: eqn 1.12 is simple to write down and re-
member. Perhaps more importantly, it does describe gases quite
well under quite a wide range of conditions.

e The ideal gas equation forms the basis of much of our study of
classical thermodynamics. Gases are common in nature: they are
encountered in astrophysics and atmospheric physics; it is gases
which are used to drive engines, and thermodynamics was invented
to try and understand engines. Therefore this equation is funda-
mental in our treatment of thermodynamics and should be mem-
orized.

e The ideal gas law, however, doesn’t describe all important gases,
and several chapters in this book are devoted to seeing what hap-
pens when various assumptions fail. For example, the ideal gas
equation assumes that the gas molecules move non-relativistically.
When this is not the case, we have to develop a model of relativistic
gases (see Chapter 25). At low temperatures and high densities,
gas molecules do attract one another (this must occur for liquids
and solids to form) and this is considered in Chapters 26, 27, and
28. Furthermore, when quantum effects are important we need a
model of quantum gases, and this is outlined in Chapter 30.

e Of course, thermodynamics applies also to systems which are not
gaseous (so the ideal gas equation, though useful, is not a cure for
all ills), and we will look at the thermodynamics of rods, bubbles,
and magnets in Chapter 17.

1.4 Combinatorial problems

Even larger numbers than N4 occur in problems involving combinations,
and these turn out to be very important in thermal physics. The follow-
ing example illustrates a simple combinatorial problem which captures
the essence of what we are going to have to deal with.

Example 1.3

Let us imagine that a certain system contains ten atoms. Each of these
atoms can exist in one of two states, according to whether it has zero
units or one unit of energy. These “units” of energy are called quanta
of energy. How many distinct arrangements of quanta are possible for
this system if you have at your disposal (a) ten quanta of energy; (b)
four quanta of energy?

1.4 Combinatorial problems 7

N

o/ °\\b°\

\o 2o
Coom N

Fig. 1.2 In the kinetic theory of gases,
a gas is modelled as a number of indi-
vidual tiny particles which can bounce
off the walls of the container, and each
other.
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Fig. 1.3 Ten atoms that can accom-
modate four quanta of energy. An
atom with a single quantum of energy
is shown as a filled circle, otherwise it
is shown as an empty circle. One con-
figuration is shown here.

5Other symbols sometimes used for
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Fig. 1.4 Each row shows the ten atoms
that can accommodate » quanta of en-
ergy. An atom with a single quantum of
energy is shown as a filled circle, oth-
erwise it is shown as an empty circle.
(a) For » = 10 there is only one possi-
ble configuration. (b) For r = 4, there
are 210 possibilities, of which three are
shown.

Solution:
We can represent the ten atoms by drawing ten boxes; an empty box
signifies an atom with zero quanta of energy; a filled box signifies an
atom with one quantum of energy (see Fig. 1.3). We give two methods
for calculating the number of ways of arranging r quanta among n atoms:
(1) In the first method, we realize that the first quantum can be as-
signed to any of the n atoms, the second quantum can be as-
signed to any of the remaining atoms (there are n — 1 of them),
and so on until the 7** quantum can be assigned to any of the
remaining n — 7 + 1 atoms. Thus our first guess for the num-
ber of possible arrangements of the r quanta we have assigned is
Qguess = X (n—1) x (n —2) x... x (n —r+1). This can be
simplified as follows:
nx(n-1)xm-2)x...x1  nl
(n—r)yx(n—-r—-1)x...x1 (n—r)

Qguess = (1.13)

However, this assumes that we have labelled the quanta as “the
first quantum”, “the second quantum” etc. In fact, we don’t care
which quantum is which because they are indistinguishable. We
can rearrange the r quanta in any one of r! arrangements. Hence
our answer {2gyess Needs to be divided by r!, so that the number
of unique arrangements is

n!
(n—r)r! =

where "C, is the symbol for a combination.’

Q= nC,, (1.14)

(2) In the second method, we recognize that there are r atoms each
with one quantum and n —r atoms with zero quanta. The number
of arrangements is then simply the number of ways of arranging r
ones and n — r zeros. There are n! ways of arranging a sequence
of n distinguishable symbols. If r of these symbols are the same
(all ones), there are r! ways of arranging these without changing
the pattern. If the remaining n — r symbols are all the same (all
zeros), there are (n—r)! ways of arranging these without changing
the pattern. Hence we again find that

n!

= (n—mr)rl’

(1.15)

For the specific cases shown in Fig. 1.4:

(a) n =10, r = 10, so © = 10!/(10! x 0!) = 1. This one possibility,
with each atom having a quantum of energy, is shown in Fig. 1.4(a).

(b) n = 10, r = 4, so = 10!/(6! x 4!) = 210. A few of these
possibilities are shown in Fig. 1.4(b).

If instead we had chosen ten times as many atoms (so n = 100) and ten
times as many quanta, the numbers for (b) would have come out much
much bigger. In this case, we would have r = 40, Q ~ 10%%. A further
factor of ten sends these numbers up much further, so for n = 1000 and
r = 400, Q ~ 10?% — a staggeringly large number.




The numbers in the above example are so large because factorials
increase very quickly. In our example we treated 10 atoms; we are
clearly going to run into trouble when we attempt to deal with a mole
of atoms, i.e., when n = 6 x 1023.

One way of bringing large numbers down to size is to look at their
logarithms.® Thus, if € is given by eqn 1.15, we could calculate

InQ =1In(n!) —In((n — r)!) — In(r!). (1.16)

This expression involves the logarithm of a factorial, and it is going
to be very useful to be able to evaluate this. Most pocket calculators
have difficulty in evaluating factorials above 69! (because 70! > 10
and many pocket calculators give an overflow error for numbers above
9.999 x 10%?), so some low cunning will be needed to overcome this. Such
low cunning is provided by an expression termed Stirling’s formula:

Inn!=nlnn —n. (1.17)

This expression” is derived in Appendix C.3.

Example 1.4

Estimate the order of magnitude of 1023!.
Solution:
Using Stirling’s formula, we can estimate

In10%! =~ 1021010 — 102 = 5.2 x 10%, (1.18)

and hence
10?31 = exp(In 10?3!) ~ exp(5.20 x 10%4). (1.19)

We have our answer in the form e*, but we would really like it as ten to
some power. Now if €* = 10Y, then y = z/In 10 and hence

10231 ~s 102-26x10% (1.20)
Just pause for a moment to take in how big this number is. It is roughly
one followed by about 2.26 x 10?* zeros! Our claim that combinatorial

numbers are big seems to be justified!

1.5 Plan of the book

This book aims to introduce the concepts of thermal physics one by one,
steadily building up the techniques and ideas that make up the subject.
Part I contains various preliminary topics. In Chapter 2 we define heat
and introduce the idea of heat capacity. In Chapter 3, the ideas of
probability are presented for discrete and continuous distributions. (For
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SWe will use “In” to signify log to the
base e, i.e., In = log,. This is known as
the natural logarithm.

7As shown in Appendix C.3, it is
slightly more accurate to use the for-
mula Inn! & nlnn —n + %ln21rn, but
this only gives a significant advantage
when n is not too large.
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Part | Preliminaries
Chapters 1,2, 3,4 e e e e ey
1|2
Part Il  Kinetic theory
Chapters 5,6, 7, 8
A
PartIll  Transport & thermal diffusion
Chapters 9, 10
|}
Part IV The first law .
Chapters 11,12
1|8
PartV  The second law
Chapters 13, 14, 15
1|8
Part VI Thermodynamics in action
Chapters 16,17, 18
L
Part VII Statistical mechanics
Chapters 19, 20, 21, 22, 23, 24
L
Part VIII Beyond the ideal gas
Chapters 25, 26, 27, 28, 29, 30
|}
Part IX Special topics
Chapters 31, 32, 33, 34, 35, 36, 37
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Fig. 1.5 Organization of the book. The dashed line shows a possible route through the material that avoids the kinetic theory
of gases. The numbers of the core chapters are given in bold type. The other chapters can be omitted on a first reading, or for
a reduced-content course.



a reader familiar with probability theory, this chapter can be omitted.)
We then define temperature in Chapter 4, and this allows us to introduce
the Boltzmann distribution, which is the probability distribution for
systems in contact with a thermal reservoir.

The plan for the remaining parts of the book is sketched in Fig. 1.5.
The following two parts contain a presentation of the kinetic theory of
gases, which justifies the ideal gas equation from a microscopic model.
Part II presents the Maxwell-Boltzmann distribution of molecular speeds
in a gas and the derivation of formulae for pressure, molecular effusion,
and mean free path. Part III concentrates on transport and thermal
diffusion. Parts II and III can be omitted in courses in which kinetic
theory is treated at a later stage.

In Part IV, we begin our introduction to mainstream thermodynamics.
The concept of energy is covered in Chapter 11, along with the zeroth
and first laws of thermodynamics. These are applied to isothermal and
adiabatic processes in Chapter 12.

Part V contains the crucial second law of thermodynamics. The idea
of a heat engine is introduced in Chapter 13, which leads to various
statements of the second law of thermodynamics. Hence the important
concept of entropy is presented in Chapter 14 and its application to
information theory is discussed in Chapter 15.

Part VI introduces the rest of the machinery of thermodynamics. Vari-
ous thermodynamic potentials, such as the enthalpy, Helmholtz function,
and Gibbs function, are introduced in Chapter 16, and their usage illus-
trated. Thermal systems include not only gases, and Chapter 17 looks at
other possible systems, such as elastic rods and magnetic systems. The
third law of thermodynamics is described in Chapter 18 and provides
a deeper understanding of how entropy behaves as the temperature is
reduced to absolute zero.

Part VII focuses on statistical mechanics. Following a discussion of the
equipartition of energy in Chapter 19, so useful for understanding high
temperature limits, the concept of the partition function is presented
in some detail in Chapter 20, which is foundational for understanding
statistical mechanics. The idea is applied to the ideal gas in Chapter 21.
Particle number becomes important when considering different types
of particle, so the chemical potential and grand partition function are
presented in Chapter 22. Two simple applications where the chemical
potential is zero are photons and phonons, discussed in Chapters 23 and
24 respectively.

The discussion up to this point has concentrated on the ideal gas
model and we go beyond this in Part VIII: Chapter 25 discusses the
effect of relativistic velocities and Chapters 26 and 27 discuss the effect
of intermolecular interactions, while phase transitions are discussed in
Chapter 28, where the important Clausius-Clapeyron equation for a
phase boundary is derived. Another quantum mechanical implication is
the existence of identical particles and the difference between fermions
and bosons, discussed in Chapter 29; the consequences for the properties
of quantum gases are presented in Chapter 30.

1.5 Plan of the book 11
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The remainder of the book, Part IX, contains more detailed informa-
tion on various special topics which allow the power of thermal physics
to be demonstrated. In Chapters 31 and 32 we describe sound waves
and shock waves in fluids. We draw some of the statistical ideas of the
book together in Chapter 33 and discuss non-equilibrium thermodynam-
ics and the arrow of time in Chapter 34. Applications of the concepts
in the book to astrophysics are described in Chapters 35 and 36 and to
atmospheric physics in Chapter 37.

Chapter summary

Exercises
(1.1) What is the mass of 3 moles of carbon dioxide (1.4) A system contains n atoms, each of which can only
(CO2)? (1 mole of oxygen atoms has a mass of have zero or one quanta of energy. How many ways
16g.) can you arrange 7 quanta of energy when (a) n = 2,
r=1; (b)n =20, 7 = 10; (c) n = 2 x 10%,
(1.2) A typical bacterium has a mass of 107'?g. Calcu- r = 10237

late the mass of a mole of bacteria. (Interestingly,
this is about the total number of bacteria living in
the guts of all humans resident on planet Earth.)
Give your answer in units of elephant-masses (ele-
phants have a mass ~ 5000 kg). (a) In10!,

]
(1.3) (a) How many water molecules are there in your (b) In100!, and
body? (Assume that you are nearly all water.) (c) In1000!?
(b) How many drops of water are there in all the (1.6) Show that eqn C.19 is equivalent to writing
oceans of the world? (The mass of the world’s
oceans is about 102! kg. Estimate the size of a typ- n! ~n"e "V2nn, (1.21)
ical drop of water.)

(c) Which of these two numbers from (a) and (b) is and 1
the larger? nl ~ V2" t2e™ " (1.22)

(1.5) What fractional error do you make when using Stir-
ling’s approximation (in the form Inn! ~ nlnn—n)
to evaluate



Heat

In this chapter, we will introduce the concepts of heat and heat capacity.

2.1 A definition of heat 13
2.2 Heat capacity 14
2.1 A definition of heat Chapter summary 17
Exercises 17

We all have an intuitive notion of what heat is: sitting next to a roaring
fire in winter, we feel its heat warming us up, increasing our temperature;
lying outside in the sunshine on a warm day, we feel the Sun’s heat
warming us up. In contrast, holding a snowball, we feel heat leaving
our hand and transferring to the snowball, making our hand feel cold.
Heat seems to be some sort of energy transferred from hot things to cold
things when they come into contact. We therefore make the following
definition:

heat is thermal energy in transit.

We now stress a couple of important points about this definition.

(1) Experiments suggest that heat spontaneously transfers from a hot-
ter body to a colder body when they are in contact, and not in the
reverse direction. However, there are circumstances when it is pos-
sible for heat to go in the reverse direction. A good example of this
is a kitchen freezer: you place food, initially at room temperature,
into the freezer and shut the door; the freezer then sucks heat out
of the food and cools the food down to below freezing point. Heat
is being transferred from your warmer food to the colder freezer,
apparently in the “wrong” direction. Of course, to achieve this,
you have to be paying your electricity bill and therefore be putting
energy in to your freezer. If there is a power cut, heat will slowly
leak back into the freezer from the warmer kitchen and thaw out
all your frozen food. This shows that it is possible to reverse the
direction of heat flow, but only if you intervene by putting addi-
tional energy in. We will return to this point in Section 13.5 when
we consider refrigerators, but for now let us note that we are defin-
ing heat as thermal energy in transit and not hard-wiring into the
definition anything about which direction it goes.

(2) The “in transit” part of our definition is very important. Though
you can add heat to an object, you cannot say that “an object
contains a certain quantity of heat.” This is very different from
the case of the fuel in your car: you can add fuel to your car,
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IWe will see later that objects can con-
tain a certain quantity of energy, so it is
possible, at least in principle, to have a
gauge that reads out how much energy
is contained.

2Work is also a type of energy in tran-
sit, since you always do work on some-
thing. For example you do work on a
mass by lifting it a height h. We could
define work as “mechanical energy in
transit”. We will explore how work and
heat can be interchanged in Chapter 13.

3We have made this point by giving a
plausible example, but in Chapter 11
we will show using more mathematical
arguments that heat only makes sense
as energy “in transit”.

and you are quite entitled to say that your car “contains a certain
quantity of fuel”. You even have a gauge for measuring it! But
heat is quite different. Objects do not and cannot have gauges
which read out how much heat they contain, because heat only
makes sense when it is “in transit”.!

To see this, consider your cold hands on a chilly winter day. You
can increase the temperature of your hands in two different ways:
(i) by adding heat, for example by putting your hands close to
something hot, like a roaring fire; (ii) by rubbing your hands to-
gether. In one case you have added heat from the outside, in the
other case you have not added any heat but have done some work.2
In both cases, you end up with the same final situation: hands that
have increased in temperature. There is no physical difference be-
tween hands that have been warmed by heat and hands that have
been warmed by work.3

Heat is measured in joules (J). The rate of heating has the units of watts
(W), where 1 W=1Js~! (i.e., 1 watt=1 joule per second).

Example 2.1

A 1kW electric heater is switched on for ten minutes. How much heat
does it produce?

Solution:

Ten minutes equals 600s, so the heat @ is given by

Q = 1kW x 600s = 600kJ. (2.1)

Notice in this last example that the power in the heater is supplied by
electrical work. Thus it is possible to produce heat by doing work. We
will return to the question of whether one can produce work from heat
in Chapter 13.

2.2 Heat capacity

In the previous section, we explained that it is not possible for an object
to contain a certain quantity of heat, because heat is defined as “thermal
energy in transit”. It is therefore with a somewhat heavy heart that we
turn to the topic of “heat capacity”, since we have argued that objects
have no capacity for heat! (This is one of those occasions in physics
when decades of use of a name have made it completely standard, even
though it is really a misleading name to use.) What we are going to
derive in this section might be better termed “energy capacity”, but to
do this would put us at odds with common usage throughout physics.
All of this being said, we can proceed quite legitimately by asking the
following simple question:



How much heat needs to be supplied to an object to raise its
temperature by a small amount dT'?

The answer to this question is the heat dQ = C dT', where we define

the heat capacity C of an object using
dQ
=97 (2.2)

As long as we remember that heat capacity tells us simply how much
heat is needed to warm an object (and is nothing about the capacity of
an object for heat) we shall be on safe ground. As can be inferred from
eqn 2.2, the heat capacity C has units JK~1.

As shown in the following example, although objects have a heat ca-
pacity, one can also express the heat capacity of a particular substance
per unit mass, or per unit volume.*

Example 2.2

The heat capacity of 0.125kg of water is measured to be 523JK~! at
room temperature. Hence calculate the heat capacity of water (a) per
unit mass and (b) per unit volume.
Solution:

(a) The heat capacity per unit mass c is given by dividing the heat
capacity by the mass, and hence

_ 523JK!

=" —4184x103JK kg™t . 2.
0.125kg 84 x 107 JK ke (23)

(b) The heat capacity per unit volume C is obtained by multiplying
the previous answer by the density of water, namely 1000kgm™3, so

that

C=4184x103JK kg™ ! x 1000kgm—3 = 4.184 x 10 JK~1m—3.
(2.4)

The heat capacity per unit mass ¢ occurs quite frequently, and it is
given a special name: the specific heat capacity.

Example 2.3

Calculate the specific heat capacity of water.

Solution:

This is given in answer (a) from the previous example: the specific heat
capacity of water is 4.184 x 103JK~1kg™! .

2.2 Heat capacity 15

4We will use the symbol C to represent
a heat capacity, whether of an object,
or per unit volume, or per mole. We
will always state which is being used.
The heat capacity per unit mass is dis-
tinguished by the use of the lower-case
symbol c¢. We will usually reserve the
use of subscripts on the heat capacity
to denote the constraint being applied
(see eqns 2.6 and 2.7).
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5This complication is there for liquids
and solids, but doesn’t make such a big
difference.

(b)

f heat

Fig. 2.1 Two methods of heating a gas:
(a) constant volume, (b) constant pres-
sure.

SWe will calculate the relative sizes of
Cy and Cp in Section 11.3.

Also useful is the molar heat capacity, which is the heat capacity
of one mole of the substance.

Example 2.4

Calculate the molar heat capacity of water. (The molar mass of water
is 18g.)

Solution:

The molar heat capacity is obtained by multiplying the specific heat
capacity by the molar mass, and hence

C=4184x10*JK 'kg™! x 0.018kg = 75.2J K~ mol~!.  (2.5)

When we think about the heat capacity of a gas, there is a further
complication.® We are trying to ask the question: how much heat should
you add to raise the temperature of our gas by one kelvin? But we can
imagine doing the experiment in two ways (see also Fig. 2.1):

(1) Place our gas in a sealed box and add heat (Fig. 2.1(a)). As the
temperature rises, the gas will not be allowed to expand because
its volume is fixed, so its pressure will increase. This method is
known as heating at constant volume.

(2) Place our gas in a chamber connected to a piston and heat it
(Fig. 2.1(b)). The piston is well lubricated, and so will slide in
and out to maintain the pressure in the chamber to be identical
to that in the lab. As the temperature rises, the piston is forced
out (doing work against the atmosphere) and the gas is allowed to
expand, keeping its pressure constant. This method is known as
heating at constant pressure.

In both cases, we are applying a constraint to the system, either con-
straining the volume of the gas to be fixed, or constraining the pressure
of the gas to be fixed. We need to modify our definition of heat capacity
given in eqn 2.2, and hence we define two new quantities: Cy is the heat
capacity at constant volume and C, is the heat capacity at constant
pressure. We can write them using partial differentials as follows:

o - (%) )

We expect that C), will be bigger than Cy for the simple reason that
more heat will need to be added when heating at constant pressure than
when heating at constant volume. This is because in the latter case
additional energy will be expended on doing work on the atmosphere
as the gas expands. It turns out that indeed C, is bigger than Cy in
practice.®
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Example 2.5

The specific heat capacity of helium gas is measured to be 3.12kJ K~ kg

-1

at constant volume and 5.19kJ K~1 kg~! at constant pressure. Calculate
the molar heat capacities. (The molar mass of helium is 4g.)

Solution:
The molar heat capacity is obtained by multiplying the specific heat
capacity by the molar mass, and hence

Cy =
Cp =

12.48 JK~1mol !,
20.76 JK~1 mol—1.

(2.8)
(2.9)

(Interestingly, these answers are almost exactly %R and %R where R is
the gas constant.” We will see why in Section 11.3.)

Chapter summary

7R = 8.31447 JK—1 mol~! is known as
the gas constant and is equal to the
product of the Avogadro number Nj
and the Boltzmann constant kg (see
Section 6.2).

Exercises

(2.1)

(2.2)

(2.3)

Using data from this chapter, estimate the energy
needed to (a) boil enough tap water to make a cup
of tea, (b) heat the water for a bath.

The world’s oceans contain approximately 102! kg
of water. Estimate the total heat capacity of the
world’s oceans.

The world’s power consumption is currently about
13TW, and growing! (1TW= 10'2W.) Burning
one ton of crude oil (which is nearly seven barrels
worth) produces about 42 GJ (1 GJ= 10°J). If the
world’s total power needs were to come from burn-
ing oil (a large fraction currently does), how much
oil would we be burning per second?

(2.4)

(2.5)

The molar heat capacity of gold is 25.4 J mol ~* K~ 1.
Its density is 19.3x10%kgm™3. Calculate the spe-
cific heat capacity of gold and the heat capacity
per unit volume. What is the heat capacity of
4 x 10°kg of gold? (This is roughly the holdings
of Fort Knox.)

Two bodies, with heat capacities Ci1 and C2 (as-
sumed independent of temperature) and initial tem-
peratures 71 and T> respectively, are placed in ther-
mal contact. Show that their final temperature
Tt is given by T = (01T1 + Csz)/(C]_ + Cz).
If C; is much larger than C2, show that Ty =
Ty + Co(T2 — Th)/Ch.




 
 
    
   HistoryItem_V1
   TrimAndShift
        
     Range: all pages
     Trim: fix size 7.283 x 9.646 inches / 185.0 x 245.0 mm
     Shift: 无
     Normalise (advanced option): 'original'
      

        
     32
            
       D:20120707160955
       694.4882
       Blank
       524.4094
          

     Tall
     1
     0
     No
     298
     115
    
     None
     Up
     28.3465
     0.0000
            
                
         Both
         1
         AllDoc
         17
              

       CurrentAVDoc
          

     Uniform
     17.0079
     Bottom
      

        
     QITE_QuiteImposingPlus2
     Quite Imposing Plus 2 2.0
     Quite Imposing Plus 2
     1
      

        
     0
     16
     15
     16
      

   1
  

 HistoryList_V1
 qi2base





