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1 Introduction

Learning a representation that captures the latent semantics of a large collection of
data is an important problem in many scientific and engineering applications.
Probabilistic topic models such as LDA (latent Dirichlet allocation) [ Blet et al. 2003]
posits that each document is an admixture of latent topics where each topic is a unigram
distribution over the terms in a vocabulary. The document-specific admixture proportion
vector can be regarded as a representation of the document in the latent topic space.
which can be used for classification [ Zhu et al. 2009 ], retrieval [ Hofmann 1999 | or
visualizing the otherwise unstructured collection; and the inferred word-level topic
assignment distributions can be useful for word sense induction [ Brody and Lapata
2009 ] or disambiguation [ Boyd-Graber et al. 2007 ].

However, such a probabilistic topic model is largely limited in two aspects. First,
it lacks a mechanism to explicitly control the sparsity of the inferred representations.
Sparsity of the representations in a semantic space is a desirable property in text

modeling[ Shashanka et al. 2007 ; Wang and Blei 2009 ] and human vision [ Olshausen and
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Field 1996 ]. For example, very often it makes intuitive sense to assume that each
document or each word has a few salient topical meanings or senses [ Shashanka ez al.
2007 ; Wang and Blei 2009 |, rather than letting every topic or sense make a non-zero
contribution; this is especially important in practice for large scale text mining endeavors such
as those undertaken in Google or Yahoo, where it is not uncommon to learn hundreds if
not thousands of topics for hundreds of millions of documents—without an explicit
sparcification procedure, it would be extremely challenging, if not impossible, to nail
down the semantic meanings of a document or word. Second, the probabilistic nature of
such topic models could make it computationally difficult to incorporate supervised side
information [ Wang et al. 20097 or a rich set of features [ Zhu and Xing 20107]. This is
because each component in such a probabilistic model needs to be a normalized
distribution, in which the normalization factor or log-partition function could make the
inference extremely hard.

To achieve sparsity in a probabilistic topic model is non-trivial. Existing attempts,
such as imposing posterior regularization (e. g. , using entropic priors| Shashanka et al.
20077 or moment constraints [ Ganchev et al. 2010]), introducing auxiliary variables
[ Wang and Blei 2009 ], or using a sparse exponential prior in LDA [ Yang et al. 2010],
can in principle introduce a bias toward a posterior distribution that is concentrated on a
small number of components (e. g. , topics). However, due to the smoothness of the
regularizer (e. g. ., entropic regularizer) or uncertainty of auxiliary variables, such
methods often do not yield truly sparse results in practice. Moreover, the
aforementioned methods aim either at achieving sparse document-level representations
[ Shashanka et al. 2007; Yang et al. 2010 ] or sparse topic vectors [ Wang and Blei
20097]. To the best of our knowledge, no systematical study exists on discovering sparse
word-level representations. For the second limitation, the non-probabilistic latent
variable/factor models, such as non-negative matrix factorization (NMF) [ Lee and
Seung 1999 | and sparse coding (SPC) methods, provide inspiring ideas to relax the
strict normalization condition in probabilistic models.

As we have stated, the reason for the second limitation is that probabilistic models
require to define normalized distributional components. Similarly, a technical reason for
the difficulty in achieving sparsity in a probabilistic topic model is also that the admixing

proportions or topics take the form as a normalized vector that defines a distribution.
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Therefore, it is unhelpful to directly use a sparsity inducing ¢;-regularizer as in Lasso
[ Tibshirani 1996 ; Meinshausen and Yu, 2009 ]. In contrast, the non-probabilistic sparse
coding [ Olshausen and Field 1996 ] provides an elegant framework to achieve sparsity on
the usually un-normalized code vector or dictionary (i. e., a basis set) by using the
theoretically sound ¢,-regularizer or other composite regularizers [ Kim and Xing 2010;
Jenatton et al. 2010;Jacob et al. 2009;Bengio et al. 20097]. Although much work has
been done on learning a structured dictionary [ Jenatton ez al. 2010;Bengio et al. 2009 ],
existing sparse coding methods typically discover flat representations, such as the
single-layer sparse codes of small image patches or word terms [ Jenatton et al. 2010;
Bengio et al. 2009]. In order to achieve a representation of an entire image or document
from the sparse codes of its components, a post-processing such as average or max
pooling [ Yang et al. 2009 ] is needed. This two-step procedure can be rather sub-
optimal because it lacks a channel to provide direct correlations between individual
component representations [ Hyvirinen and Hoyer 2001 7], or to leverage the possibly
available high-level weak supervision (e. g. , document categories) to discover predictive
representations [ Zhu et al. 20097 or learn a supervised dictionary [ Mairal et al. 20087,

To address the above limitations, we present sparse topical coding (STC), a novel
statistical method for learning sparse hierarchical representations of input samples, such
as text documents. In STC, each noisy individual input feature (e. g. , a word count) is
reconstructed from a sparse linear combination of a set of bases, and the representation
of an entire document is derived via an aggregation strategy (e. g., averaging or
truncated averaging) from the sparse codes of all its individual word features. By using a
log-loss under the broad exponential family of distributions, STC can model both
discrete and continuous data. When applied to text, we use the log-Poisson loss to
model discrete word counts and learn the bases that are unigram distributions over the
terms in a vocabulary, also known as topics. We present an efficient coordinate descent
algorithm to solve the hierarchical sparse coding problem, and the dictionary learning is
efficiently done with projected gradient descent. Our algorithm provides a systematic
(both algorithmic and empirical) comparison between STC and probabilistic LDA
models [ Blet ez al. 20037.

In addition, we also describe a supervised STC (MedSTC) to show how to

incorporate supervising side-information when it is available into the STC to discover
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more predictive representations and learn a more accurate document classifier. Finally,
we provide some empirical studies on text modeling and classification. Our results show
that STC can learn meaningful topical bases, infer sparse topical representations of
documents, and identify sparse topical senses of words which would be useful for word
sense induction [ Pantel and Lin 2002 ; Brody and Lapata 2009 ] or disambiguation [ Boyd-
Graber et al. 2007 ]. We report that both the unsupervised STC and supervised
MedSTC outperform several competing methods on document classification and are
significantly more efficient (an order of magnitude speed up) on training and testing.
This chapter is structured as follows. Section 2 introduces related work. Section 3
presents STC and an efficient coordinate descent algorithm. Section 4 describes a collapsed
version of STC and MedSTC. Section 5 presents empirical studies, and Section 6 concludes

with future directions discussed.

2 Related Work

Sparse coding is a powerful technique that can learn a generic dictionary from an
unlabeled corpus. The learned dictionary can be further used to encode a data sample
and find a new representation, which is wuseful for visualization, clustering,
classification, or self-taught learning[ Raina er al. 2007 ]. However, by treating the
inputs as independent samples and using the flat ¢,-norm regularizer, the standard
sparse coding has limitations because of its incapacity to learn structured dictionary and
structured representations of the input samples. Much work has been done focusing on
addressing the first problem to learn structured dictionary, such as [ Jenatton ez al.
2010] by using a structured sparsity regularizer (e. g. , group-wise Lasso [Jacob et al.
20097 or tree-guided Lasso [ Kim and Xing 2010]), [ Varshney ez al. 2008] by designing
a structure among dictionary elements, or [ Jost et al. 2006] by using a clustering
algorithm to construct a tree structure. However, much less work has been done on
learning structured sparse representations of input samples. Sparse topical coding is a
hierarchical sparse coding technique, and it has close relationships with latent Dirichlet
allocation (LDA) [ Blet et al. 2003 ] and non-negative matrix factorization (NMF) [ Lee
and Seung 1999 ], as detailed below.
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2.1 Probabilistic LDA

STC is a hierarchical sparse coding method that shares the similar goal as the probabilistic
LDA [Blet ez al. 2003] for inferring latent representations of text documents, Before formally
introducing STC, we discuss potential drawbacks of LDA on the model aspect.

First, LDA does not have an explicit definition of word code. In LDA, a document
is represented as a sequence of words w = (w; sw; ,***swy) »where M denotes document
length and w,, is an N-dimensional indicator vector, that is, w,.,, =1 if word n appears
in the mth position of the document; otherwise 0. LDA associates each position m with
a topic assignment indicator variable Z,, and assumes that the topics of all the words in a
document are sampled from the same document-level topic mixing proportion, which
will be denoted by §. By assuming a Dirichlet prior over the topic mixing proportion @ ,
LDA defines a joint distribution for a document

M
P zvw | e = p@ | [ G | ) pCro,| 2.8 @)

m=1
where both the topic assignment model p (z, | §) and the word generating model
p(w, | 2,0 are normalized multinomial distributions and « are Dirichlet parameters.
For comparison, an equivalence to word code can be defined as the empirical word-topic
assignment distribution p(z(n) =£k)cC >, w,mq (2, = 1| ), where z(n) is the topic of
word n. The distribution p(2(n)) can be regarded as a representation of word »n in the
topic space, and it can be inferred using sampling [ Brody and Lapata 2009 ] or variational
methods [ Blet ez al. 2003].

Second, LLDA lacks an explicit sparcification procedure on the inferred representations.
Although we can adjust o to make § concentrate much of its mass on a small number of
topics a priori, it only indirectly influences the sparsity of inferred posterior representations
[Ganchev et al. 2010]. In practice, using a Dirichlet prior is ineffective in controlling
the posterior sparsity of LDA. Fig. 1 shows the sparsity ratio of word code (i. e.,
number of zeros in the code divided by topic number K) and classification accuracy with

different pre-specified Dirichlet parameter ¢ of LDA using variational inference®, We

@ In theory, variational methods don’t produce zero code elements because of the exponential update rule. But
in practice, it is safe to truncate very small values to be zero. Similarly, sampling methods don’t have a direct control

on the posterior sparisty either.
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can see that a small o (i. e. , a weak Dirichlet smoothing [ Blet et al. 2003]) can yield
sparse representations because of data scarcity, but this sparsity is not good for
classification. Using a large a (i. e. , a strong Dirichlet smoothing) can increase the
accuracy, but it dramatically reduces the sparsity ratio. Also, there is a sharp change

point around =10 °,
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Fig. 1 Sparsity ratio of word codes and classification accuracy (please see Section 5.1, 5. 2 for details)

of 70-topic LDA with different pre-specified Dirichlet parameter a.

2.2 Non-negative Matrix Factorization

STC is essentially a sparse hierarchical non-negative matrix factorization (NMF)
[ Lee and Seung 1999 ]. Let X denote the observed N X D word count matrix, where
rows represent terms in a dictionary and columns represent documents. Then, NMF is
to find non-negative matrices U € R¥*F and V € R¥*? such that XUV, where K is the
rank which is usually much smaller than N. Each column of the matrix U represents a
basis and each row of V' is the non-negative coefficient vector for a particular document.
In [Lee and Seung 1999, a similar log-Poisson loss is used to estimate the matrices U
and V. However, NMF uses one document-specific coefficient vector V, to reconstruct
all the observed word counts w, in the same document. This assumption is often too
limiting to effectively model a large collection of documents. In contrast, as we will see
later, STC allows different words in one document to exhibit different sparsity patterns
via using different word codes. This difference is analogous to the difference between

latent Dirichlet allocation (LDA) and mixture of unigrams [ Blet ez al. 2003 ].
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Empirically, the sparsity ratio of the “word codes” for NMF (i. e. , the document-
specific coefficient vector, which is the same for all the words in a document) is much
smaller (around 0. 005 for different numbers of topics ranging from 10 to 110) than that
of STC. Therefore, NMF is limiting in using one document-specific coefficient vector to
reconstruct all the word counts in that document and cannot identify the sparse topical
meanings of each individual word. Although using a sparsity-inducing constraint [ Hoyer
2004 ] can improve the sparseness of the coefficient vector in NMF, it still cannot
identify the sparse topical meanings of each individual words because of the intrinsic
limitation. Moreover, as shown in Fig.2, NMF performs worse than STC on
classification accuracy when the topic number is large (e. g. , larger than 60) and the
standard multiplicative algorithm [ Lee and Seung 1999 ] is more expensive than our

coordinate descent algorithm for training STC.
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Fig. 2 (L) classification accuracy and (R) training time of NMF and STC when using

different number of topics on the 20 Newsgroups data.

3 Sparse Topical Coding

Now, we present more details about sparse topical coding for modeling text

documents. But the method is applicable to other types of data, such as continuous
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image features. Let N be the number of terms in a given vocabulary V=1{1,2,++,N}.
Using a bag-of-words model, we represent a document as a vector w = (w; . w;» ***»
w |I|)T, where I denotes the index set of words that appear and each w, (n € I)
represents the number of appearances of word n in this document. STC projects the
input w into a semantic latent space spanned by a set of automatically learned bases (a
basis set is also called a dictionary) and achieve a high-level representation of the entire
document jointly. Both document-level and word-level latent representations can be used
for many tasks [ Blet ez al. 2003 ;Boyd-Graber et al. 2007 ;Brody and Lapata 2009]. For

the ease of understanding, we start with a probabilistic generating procedure.
3.1 A Probabilistic Generative Process

Let 8 denote a dictionary with K bases, of which each row B, is an N dimensional
basis. We assume that §, is a unigram distribution over the N terms in V, that is, g, € P,
where P is an (N—1)-simplex. A distributional basis is also known as a topic. We will
use 8, € R¥ to denote the nth column of 8. Graphically, sparse topical coding (STC) is a
hierarchical latent variable model, as shown in Fig. 3, where § € R* is the latent
representation of an entire document while each s, € R is a latent representation of the
individual word n. We call s, = (5,1 555 »5x) - as word code and @ = (0,1 0,5 5+ s0x )T

as document code.
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Fig. 3 A two layer sparse topical coding model

We make the assumption that for each document the word codes s, are conditionally
independent given its document code § and the observed word counts are independent
given their latent representations s. We first sample a dictionary g from a uniform
distribution®. Then, the generative process of document d is described as:

1) sample the document code §, from a prior distribution p(4) .

@ Using sophisticated priors (e. g. » Dirichlet prior) is our future study.
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2) for each observed word n€ I,

a) sample the word code s, from a conditional distribution p(s,|8)

b) sample the observed word count wy,, from a distribution with the mean being s;,8.,..

The key idea is that we treat s, as a coefficient vector and use the linear combination
s;pB.. to reconstruct the observed word count w,, » under some loss measure; and the
document code 6, is obtained via an aggregation (e. g. , average or truncated average as
to be presented) of the individual codes of all its terms. In order to fully specify an STC
model, we need to choose three distributions. The choices of p(§) and p(s,|0) reflect
our bias on the latent representations, and how § and s are connected. We will discuss
them in the next section, along with the algorithm development. Now, we define the
last step of generating observed features, i. e. , word counts in text documents. Here,
we adopt the class of exponential family distributions to make STC flexible to model
different types of data. Formally, we use the linear combination s;, 3., as the mean
parameter of an exponential family distribution that generates the observations (e. g. ,
w,, for text documents). In other words, we find an exponential family distribution
p(wa |84, B that satislies

E/}(wd” s, P [T(wy) ] = 351,8. n (2)

where T(w,,, denotes the sufficient statistics of the observations. In [ Lee et al. 2009,
the similar linear combination of bases is used as the natural parameter of an exponential
family distribution. We choose to use it as mean parameter because of two reasons.
First, using the linear combination as mean parameter makes it natural to constrain the
feasible domains (e. g. , nonnegative domain for modeling word counts) of the word
codes in order to have a good interpretation, while it is reluctant to do so when using the
linear combination as natural parameter and thus would lose good interpretation. As
shown in [Lee and Seung 1999 ], imposing non-negativity constraints could result in
significantly sparser and more interpretable patterns. Second, in many cases, such as
Poisson, Bernoulli and Gaussian, the distribution is commonly expressed with mean
parameters. [ Buntine and Jakulin 2006 ] uses a similar method as ours in defining

exponential family distributions.

3.2 STC for MAP Estimation

Now, we formally define STC as finding the MAP estimate of the above probabilistic

model, under a bias towards finding sparse representations. Specifically, the generating
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procedure defines a joint distribution for document d, which is factorized as:
P(@,,,Sd ,wd\ ﬁ) - p(ﬁd)Hp(sd” | (941)p(wdn ‘ San 96)
HEI[[

where S, = {s4, :n€ I,} denotes the set of word codes for document d. For discrete word

counts, we use the Poisson distribution to generate the observations, i e., p(wy, |$4 .8 =

Je
x!

Poisson (wy, 385,8.,)» where Poisson (x3v) = . In order to achieve sparse document

codes and word codes, we choose the Laplace prior p (9 ,)oc exp (—A || 041 1) and

define p(s, |0 4) as a product of two component distribution
pCsi |00 0 pCsin 00,0 pCsa | ) o exp(— 5 lsu =041 —plisull ) 3

where we have defined p(s,, |0 .,,) as an isotropic Gaussian distribution with mean @,
and precision parameter ¥ and p (s, |p) is a Laplace distribution with parameter p. This
composite distribution is super-Gaussian [ Hyvirinen 1999] and the ¢,-norm term will
bias towards finding sparse word codes. The parameters (A, ¥, p) are non-negative
constants and they can be selected via cross-validation. For p (#), another natural
choice is a normal prior. We will discuss it along the algorithm development.

Let ®= {4 ,} and S={S,} denote all the document codes and word codes for the

corpus, respectively. Sparse topical coding solves the constrained optimization problem:

min ((S.8:W) 200 + L D7 [su — 04 |17+ pW(S)

0.5.8 oy

sst. @=0;8=0; B e P,Vk €]
where ¢ is a loss function and the regularization terms are Q(®) = Ed | 0.1, and
(s = 2 Il ss Il 1. Due to the conditional independence we have made in STC, we

dan€l,

define the loss function as a summation over individual terms, that is,

0(S.Bsw) = D (wy +shB.)

dinel,

Then, the objective {unction is the negative logarithm of the posterior p(©,S,3| W)
with a constant omitted. For text documents, we define the log-Poisson loss for each
individual word

Wy, +8uPB.,) =— log Poisson (wgy, ;55,5.,) (5)

Since word counts are non-negative, a negative § or s will lose interpretability.



