Unit 5

Text A

Computer Programming

Computer programming (often shortened to programming or coding) is the process of
writing, testing, and maintaining the source code of computer programs. The source code is
written in a programming language. This code may be a modification of existing source or
something completely new, and the purpose is to create a program that exhibits the desired
behavior. The process of writing source code requires expertise in many different subjects,
including knowledge of the application domain, specialized algorithms, and formal logic.

Within software engineering, programming (the implementation) is regarded as one phase
in a software development process.

In some specialist applications or extreme situations, a program may be written or modified
(known as patching) by directly storing the numeric values of the machine code instructions to
be executed into memory.

There is an ongoing debate on the extent to which the writing of programs is an art, a craft
or an engineering discipline. Good programming is generally considered to be the measured
application of all three: expert knowledge informing an elegant, efficient, and maintainable
software solution (the criteria for “efficient” and ‘“maintainable” vary considerably). The
discipline differs from many other technical professions in that programmers generally do not
need to be licensed or pass any standardized (or governmentally regulated) certification tests in
order to call themselves “programmers” or even “software engineers”.

Another ongoing debate is the extent to which the programming language used in writing
programs affects the form that the final program takes. This debate is analogous to that
surrounding the Sapir-Whorf hypothesis in linguistics.

1. Programmers

Computer programmers are those who write computer software. Their job usually involves:

requirements analysis, specification, software architecture, coding, compilation, software testing,

Unit 5

documentation, integration, maintenance.

2. Programming Languages

Different programming languages support different styles of programming (called
programming paradigms). The choice of language used is subject to many considerations, such
as company policy, suitability to task, availability of third-party packages, or individual
preference. Ideally the programming language best suited for the task at hand will be selected.
Trade-offs from this ideal involve finding enough programmers who know the language to build
a team, the availability of compilers for that language, and the efficiency with which programs
written in a given language execute.

3. Modern Programming

3.1 Algorithmic Complexity

The academic field and engineering practice of computer programming are largely
concerned with discovering and implementing the most efficient algorithms for a given class of
problem. For this purpose, algorithms are classified into orders using so-called Big O notation,
O(n), which expresses execution time, memory consumption, or another parameter in terms of
the size of an input. Expert programmers are familiar with a variety of well-established
algorithms and their respective complexities, and use this knowledge to consider design
trade-offs between, for example, memory consumption and performance.

Research in computer programming includes investigation into the unsolved proposition
that P, the class of algorithms which can be deterministically solved in polynomial time with
respect to an input, is not equal to NP, the class of algorithms for which no polynomial-time
solutions are known. Work has shown that many NP algorithms can be transformed, in
polynomial time, into others, such as the Travelling Salesman Problem (TSP), thus establishing a
large class of “hard” problems which are for the purposes of analysis.

3.2 Methodologies

The first step in every software development project should be requirements analysis,
followed by modeling, implementation, and failure elimination (debugging).

There are a lot of differing approaches for each of those tasks. One approach popular for
requirements analysis is Use Case analysis.

Popular modeling techniques include Object-Oriented Analysis and Design (OOAD) and
Model-Driven Architecture (MDA). The Unified Modeling Language (UML) is a notation used
for both OOAD and MDA.

A similar technique used for database design is Entity-Relationship Modeling (ER
Modeling).

Implementation techniques include imperative languages (object-oriented or procedural),
functional languages, and logic languages.

Debugging is most often done with IDEs like Visual Studio, and Eclipse. Separate
debuggers like gdb are also used.

9

5

9

6

EREBEWIELAEE (52 kD

3.3 Measuring Language Usage

It is very difficult to determine what the most popular of modern programming languages
are. Some languages are very popular for particular kinds of applications (e.g. Cobol is still
strong in the corporate data center, often on large mainframes, Fortran in engineering
applications, and C in embedded applications), while some languages are regularly used to write
many different kinds of applications.

Methods of measuring language popularity include: counting the number of job
advertisements that mention the language, the number of books teaching the language that are
sold (this overestimates the importance of newer languages), and estimates of the number of
existing lines of code written in the language (this underestimates the number of users of
business languages such as Cobol).

3.4 Debugging

Debugging is a very important task for every programmer because an erroneous program is
often useless. Languages like C++ and Assembler are very challenging even to expert
programmers because of failure modes like Buffer overruns, bad pointers or uninitialized
memory. A buffer overrun can damage adjacent memory regions and cause a failure in a totally
different program line. Because of those memory issues tools like Valgrind, Purify or
Boundschecker are virtually a necessity for modern software development in the C++ language.
Languages such as Java, PHP and Python protect the programmer from most of these runtime
failure modes, but this may come at the price of a dramatically lower execution speed of the
resulting program. This is acceptable for applications where execution speed is determined by
other considerations such as database access or file /0. The exact cost will depend upon specific
implementation details. Modern Java virtual machines, for example, use a variety of
sophisticated optimizations, including runtime conversion of interpreted instructions to native

machine code.

New Words

exhibit [ig'zibit] v. JEIR

expertise [.ekspa:'tiiz] n. HIIHEAK

application [.eepli'’keif an] n. N

phase [feiz] n. BB, B

patching ['peetfin] n. AN, FTHNT

ongoing ['ongauin] adj. AWK, IEAEREATIR: AU
debate [di'beit] v. &n. Grig, AL

extent [iks'tent] n. PR

craft [kra:ft] n. L, T4

elegant
maintainable
considerably
regulate
license
licensed
linguistics
compilation
documentation
maintenance
suitability
availability
preference
ideally
academic
consumption
respective
complexity
investigation
unsolved
proposition
deterministic
deterministically

polynomial

methodology
debugging
notation

overestimate

underestimate
erroneous
useless
challenging
overrun

initialize

‘eligoant]
men'teinabl]
kan'siderabali]
‘regjuleit]
laisans]
laisanst]
lin'gwistiks]
kompi'leif an]
dokjumen'teifan]
'meintinans]
sju:ta’bilati]
aveila'biliti]
prefarans]
ai'diali]
eka'demik]
kan'samp|an]
ris'pektiv]
kam'pleksiti]
investi'geifan]
'An'solvd]
propa’zifan]
dita:mi'nistik]
dite:mi'nistikali]

[
[
[
[
[
[
[
[
[
[
[
[®
.
[
[
[
[
[
[i
[
[
[
[
[

poli'naumial]

meBa'dolad3i]
di:'bagin]
nau'teifan]

[
[
[
['ouva'estimeit]

['Andar'estimeit]
[i'reunias]
[ju:slis]
['t]eelind3in]
[ouva'ran]

[i'nif alaiz]

Unit 5

adj. TN, TRER), RHER), B
adj. IY4EFH

adv. FH* 4

ve. B, AL T, R
vt. RVFAIUEZs, #itiE, Vrnr
adj. 133 VFAIH)

n. WBE ¥

n. 9w G

n. A

n. 4E3, fREF

n. &id, &M, MR

n. ATRITE, AR, SRR
n. S,

adv. FRAEHL, FEMG
adj. *FRil), BB

n. JM¥E, W
adj. 7, #BEMW
n. ZHtE, RI2AMEEY)

n. W, W

adj. KAV

n R, Al 39k, @i
adj. WEtEr, er
adv. B, e

adj. Z K

n. 2\

n. J7ik

n. Pk

n. fi'g

vt. PRI

n. it E, PRI
vt. & n. LAl

adj. #R, ANIERR
adj. TR, JoR, Joaam, e Em
adj. BRigER

n. M, BB

vt. Ytk

97

N/

08, EEEBEUKERMALIE F 28

N

uninitialized
adjacent
necessity
protect
acceptable

consideration

Phrases

Ani'nif alaizd]
a'dzeisant]
ni'sesiti]
pro'tekt]

[
[
[
[
[ek'septabl]
[

programming language

differ from
formal logic
regard as ...
software engineer

be analogous to

kansida'reifan]

requirements analysis
software architecture
programming paradigm
be subject to

in terms of

be familiar with

with respect to

be equal to

at hand

algorithmic complexity
failure elimination
imperative language
functional language
logic language

use case

be strong in

at the price of

be determined by

Java virtual machine

native machine code

adj. CHILHALIN

adj. SR, FELH

n. DELVE, TEEL, TR
vt PRA

adj. WEZZI, HEM
n. ki, #E

R

AT TR

RKELF, KFET

it R

L/GERAES

g P X

HRANs Bheeeees g 25, B20e
SR R 1=

&

K, &2F AT

T

FETFI, AEMIE, BRIk
SRS R

Hewh

RS

=

s

| O
o o il
ﬁ
=
i
Tll}

Java FERIHL
A HALA A

-+ RS2 T

Unit 5

Abbreviations

TSP (Travelling Salesman Problem) JRAT 7 1) R

IDE (Integrated Development Environment) EIPIY EIN:
COBOL (COmmon Business-Oriented Language) T 1) 7 b P A
PHP (Hypertext Preprocessor) JESCA AL
OOAD (Object-Oriented Analysis and Design) [IERSE Stz
MDA (Model-Driven Architecture) TR IR By L)

UML (Unified Modeling Language) g ERHEE

ER Modeling (Entity-Relationship Modeling) AR —IC FR A
Notes

[1] This code may be a modification of existing source or something completely new, and
the purpose is to create a program that exhibits the desired behavior.

AAJH, to create a program S &) 1A A g S E, MERTE . that support decision-making
ST NA], BRI E a program.

[2] Another ongoing debate is the extent to which the programming language used in
writing programs affects the form that the final program takes.

Af)H, which the programming language used in writing programs affects the form that
the final program takes J& & i Mf), EIHAIFEE the extent. fEiZMHAJH, used in writing
programs & F oA R E, MU iE, BRI & the programming language; that the final
program takes 7 € ¥ M), BHiFIFRE the form.,

[3] The discipline differs from many other technical professions in that programmers
generally do not need to be licensed or pass any standardized (or governmentally regulated)
certification tests in order to call themselves “programmers” or even “software engineers”.

Af)H, in that programmers generally do not need to be licensed or pass any standardized
(or governmentally regulated) certification tests in order to call themselves “programmers” or
even “software engineers” ¢ Jit LUK TE M A, 45116 3= 7)) 15 7 differs from.in that %5 because.
inorderto MEEZE “HT7,

[4] For this purpose, algorithms are classified into orders using so-called Big O notation,
O(n), which expresses execution time, memory consumption, or another parameter in terms of

the size of an input.
Af)H, using so-called Big O notation, O(n)s&ILAE 10 s, MoeiE, B e

\99/

100

N/

EREBEWIELAEE (52 kD

orders ., which expresses execution time, memory consumption, or another parameter in terms of
the size of an input /& JERE & M 1 MY, X Big O notation, O(n)ZEAT M 7R 1 B

[5] Research in computer programming includes investigation into the unsolved proposition
that P, the class of algorithms which can be deterministically solved in polynomial time with
respect to an input, is not equal to NP, the class of algorithms for which no polynomial-time
solutions are known.

AfiJHr, that P, the class of algorithms which can be deterministically solved in polynomial
time with respect to an input, is not equal to NP, the class of algorithms for which no
polynomial-time solutions are known /& [f|{/ 1% M f), X} the unsolved proposition IE4T fi# i
. fEiZMAIh, P23, isnot equal to NP J&iiif; the class of algorithms which can be
deterministically solved in polynomial time with respect to an input +& 4 il 4 5555, % P 347 %b
RV, fE1ZK 7Y, which can be deterministically solved in polynomial time with respect to
an input ZEIEMNG), BHALE the class of algorithms. for which no polynomial-time
solutions are known for which no polynomial-time solutions are known 1 /& 44 17 £ 56 iE, X NP
HEATAN TR0, 7EiZJH &, for which no polynomial-time solutions are known +¢& 4\ i i &'
) 5E VB N, ABAHFIBR 52 ' AT T Y the class of algorithms.

Exercises

[Ex.1] MRAZRICAR, [HIZLLT

1) What is computer programming?

2) What does the process of writing source code require?

3) What are the general criteria for good programming?

4) What does the programmer’s job involve?

5) What should be considered when choosing the programming language?
6) What should be the first step in every software development project?
7) What do popular modeling techniques include?

8) What do implementation techniques include?

9) What are the methods of measuring language popularity mentioned in the passage?

Unit 5

10) Why is debugging a very important task for every programmer?

[Ex.2] S H P
1. Use Case

2. requirements analysis

3. failure elimination

4. native machine code

5. Unified Modeling Language

6.n. 5

7. vt. HILH

8. MR G o et

9. adj.] YEH)
10. SRR

[Ex.31 J] T 5 HE i 4

elements memory hiding language developing

A T A o B e

_.
e

comparison amount portable details concepts

In computing, a high-level programming language is a programming language with strong
abstraction from the details of the computer. In __ 1 to low-level programming languages, it
may use natural language _ 2, be easier to use, or be more _ 3 across platforms. Such
languages hide the _ 4 of CPU operations suchas __ 5 access models and management of
scope.

This greater abstraction and _ 6 of details is generally intended to make the language
user-friendly, as it includes __ 7 from the problem domain instead of those of the machine
used. A high-level __8 isolates the execution semantics of a computer architecture from the
specification of the program, making the process of _ 9 a program simpler and more
understandable with respect to a low-level language. The _ 10 of abstraction provided
defines how “high-level” a programming language is.

[Ex.4) 00K 2R SCRIPE P ST,

Software Testing, depending on the testing method employed, can be implemented at any
time in the development process. However, most of the test effort occurs after the requirements
have been defined and the coding process has been completed. Different software development
models will focus the test effort at different points in the development process. In a more
traditional model, most of the test effort occurs after the requirements have been defined and the
coding process has been completed. Newer development models, such as Agile or XP, often
employ test driven development and place an increased portion of the testing up front in the

development process, in the hands of the developer.

1

0

102

N/

EREBEWIELAEE (52 kD

Text B

C Language—Control Statements

A program consists of a number of statements which are usually executed in sequence.
Programs can be much more powerful if we can control the order in which statements are run.

Statements fall into three general types:

o Assignment, where values, usually the results of calculations, are stored in variables.

o Input/ Output, data is read in or printed out.

e Control, the program makes a decision about what to do next.

This section will discuss the use of control statements in C. We will show how they can be
used to write powerful programs by:

e Repeating important sections of the program.

o Selecting between optional sections of a program.

1. The if else Statement

This is used to decide whether to do something at a special point, or to decide between two
courses of action.

The following test decides whether a student has passed an exam with a pass mark of 45:

if (result >= 45)

printf ("Pass\n") ;

else
printf ("Fail\n") ;

It is possible to use the if part without the else.

if (temperature < 0)

print ("Frozen\n") ;

Each version consists of a test (this is the bracketed statement following the if). If the test is
true then the next statement is obeyed. If it is false then the statement following the else is
obeyed if present. After this, the rest of the program continues as normal.

If we wish to have more than one statement following the if or the else, they should be
grouped together between curly brackets. Such a grouping is called a compound statement or a
block.

if (result >= 45)

{ printf ("Passed\n");

printf ("Congratulations\n")

else

Unit 5

{ printf ("Failed\n") ;
printf ("Good luck in the resits\n");
}

Sometimes we wish to make a multi-way decision based on several conditions. The most
general way of doing this is by using the else if variant on the if statement. This works by
cascading several comparisons. As soon as one of these gives a true result, the following
statement or block is executed, and no further comparisons are performed. In the following
example we are awarding grades depending on the exam result.

if (result >= 75)

printf ("Passed: Grade A\n");

else if (result >= 60)

printf ("Passed: Grade B\n");
else if (result >= 45)

printf ("Passed: Grade C\n");
else

printf ("Failed\n") ;

In this example, all comparisons test a single variable called result. In other cases, each test
may involve a different variable or some combination of tests. The same pattern can be used with
more or fewer else if’s, and the final lone else may be left out. It is up to the programmer to
devise the correct structure for each programming problem.

2. The switch Statement

This is another form of the multiway decision. It is well structured, but can only be used in
certain cases where:

¢ Only one variable is tested, all branches must depend on the value of that variable. The

variable must be an integral type (int, long, short or char).

e FEach possible value of the variable can control a single branch. A final, catch all, default

branch may optionally be used to trap all unspecified cases.

Hopefully an example will clarify things. This is a function which converts an integer into a
vague description. It is useful where we are only concerned in measuring a quantity when it is
quite small.

estimate (number)

int number;

/* Estimate a number as none, one, two, several, many */

{ switch (number) {

case 0:
printf ("None\n") ;
break;

case 1:
printf ("One\n") ;

break;

N0y REERCLRERBEGE (H200)

case 2:
printf ("Two\n") ;
break;

case 3

case 4

case 5
printf ("Several\n") ;
break;

default:
printf ("Many\n") ;

break;

}

Each interesting case is listed with a corresponding action. The break statement prevents
any further statements from being executed by leaving the switch. Since case 3 and case 4 have
no following break, they continue on allowing the same action for several values of number.

Both if and switch constructs allow the programmer to make a selection from a number of
possible actions.

The other main type of control statement is the loop. Loops allow a statement, or block of
statements, to be repeated. Computers are very good at repeating simple tasks many times, the
loop is C’s way of achieving this.

3. Loops

C gives you a choice of three types of loop, while, do while and for.

e The while loop keeps repeating an action until an associated test returns false. This is
useful where the programmer does not know in advance how many times the loop will be
traversed.

e The do while loops is similar, but the test occurs after the loop body is executed. This
ensures that the loop body is run at least once.

o The for loop is frequently used, usually where the loop will be traversed a fixed number
of times. It is very flexible, and novice programmers should take care not to abuse the
power it offers.

3.1 The while Loop

The while loop repeats a statement until the test at the top proves false.

As an example, here is a function to return the length of a string. Remember that the string

is represented as an array of characters terminated by a null character “\0’.

int string length(char string[])

{ int i = 0;
while (string[i] != '\0")
i++;

return (i) ;

Unit 5

The string is passed to the function as an argument. The size of the array is not specified,
the function will work for a string of any size.

The while loop is used to look at the characters in the string one at a time until the null
character is found. Then the loop is exited and the index of the null is returned. While the
character isn’t null, the index is incremented and the test is repeated.

3.2 The do while Loop

This is very similar to the while loop except that the test occurs at the end of the loop body.
This guarantees that the loop is executed at least once before continuing. Such a setup is
frequently used where data is to be read. The test then verifies the data, and loops back to read

again if it was unacceptable.

do

{ printf ("Enter 1 for yes, 0 for no :");
scanf ("%d", &input value);

} while (input value != 1 && input value != 0)

3.3 The for Loop
The for loop works well where the number of iterations of the loop is known before the loop
is entered. The head of the loop consists of three parts separated by semicolons.

o The first is run before the loop is entered. This is usually the initialization of the loop
variable.

o The second is a test, the loop is exited when this returns false.

o The third is a statement to be run every time the loop body is completed. This is usually
an increment of the loop counter.

The example is a function which calculates the average of the numbers stored in an array.

The function takes the array and the number of elements as arguments.

float average (float array[], int count)

{ float total = 0.0;
int i;
for(i = 0; 1 < count; i++)

total += arrayl[il];
return (total / count);

}

The for loop ensures that the correct number of array elements are added up before
calculating the average.

The three statements at the head of a for loop usually do just one thing each, however any of
them can be left blank. A blank first or last statement will mean no initialization or running
increment. A blank comparison statement will always be treated as true. This will cause the loop
to run indefinitely unless interrupted by some other means. This might be a return or a break

statement.

EREBEWIELAEE (52 kD

It is also possible to squeeze several statements into the first or third position, separating
them with commas. This allows a loop with more than one controlling variable. The example
below illustrates the definition of such a loop, with variables hi and lo starting at 100 and 0

respectively and converging.

for (hi = 100, lo = 0; hi >= lo; hi--, lo++)

The for loop is extremely flexible and allows many types of program behaviour to be
specified simply and quickly.

4. The break Statement

We have already met break in the discussion of the switch statement. It is used to exit from
a loop or a switch, control passing to the first statement beyond the loop or a switch.

With loops, break can be used to force an early exit from the loop, or to implement a loop
with a test to exit in the middle of the loop body. A break within a loop should always be
protected within an if statement which provides the test to control the exit condition.

5. The continue Statement

This is similar to break but is encountered less frequently. It only works within loops where
its effect is to force an immediate jump to the loop control statement.

¢ In a while loop, jump to the test statement.

o In a do while loop, jump to the test statement.

¢ In a for loop, jump to the test, and perform the iteration.

Like a break, continue should be protected by an if statement.

6. The goto Statement

C has a goto statement which permits unstructured jumps to be made. Its use is not

recommended, so we’ll not teach it here.

New Words

statement ['steitmant] n. igh)
assignment [#'sainmant] n. WRAE, 43
bracket [breekit] n. $&5
v, FE{E—il
obey [a'bei] v JIRA, A
cascade [kees'keid] n. JZ&
award [e'wo:d] vt. %1, Al
lone [loun] adj. MR, FS7IH
devise [di'vaiz] ve. Wik, i GIERD, A IR

default [di'fo:lt] n. BN, A

trap
unspecified
clarify
prove
argument

exit

verify
unacceptable
semicolon
initialization
counter
blank

squeeze

comma
respectively
converging
force
encounter
unstructured

recommend

Phrases

read in ...

print out

course of action
pass mark
group together
curly bracket
compound statement
be left out
integral type
null character
one at a time
loop body

add up

[treep]
['An'spesifaid]
[kleerifai]
[pru:v]
['a:gjumant]
[‘eksit]

['verifai]
[Anak'septabl]
['semi'kaulen]
[inifalai'zeif an]
[kaunta]
[bleenk]

[skwi:z]

[koma]
[ri'spektivli]
[kan've:d3in]
[fo:s]
[in'kaunta]
[An'strakt[ad]
[reka'mend]

n. WA, Wk

adj. RIEWIHY, A VE40UEH 1)
v, WRG, B

vt UERH, UESE, K
n. wWiE, fKHE, W
n HH

vi. IBH

vt. Ko, A5

adj. NEEFERZIT

n. 435 R

n. VOENME, #WIiHi
n. vHEES

adji. ZFHM, HM
n. B, B

v B, BE, Bl
n. 25

adv. 7 5HL, AN
adj. WL EK), &K
ve. s, SR

v, R, AHE

adj. AEEHIN)

vt. EE, R

B, Hi

Wik, Arshidfe; —EH1rs)

Lok 3K

£t

efh5, PO
Hifh

25

317

TR

/S

{EEZNEN

it

Unit 5

107

FRERTWRELAHE (F 25D

at the head of ... LE-ee =~ [S HU THI
be treated as ALK

in the middle of ... FE e IRy]
Exercises

[Ex.5) MPERICAZY, [FIZLLT A,

1) What does a program consist of?
2) What are the three general types of statements?

3) What is the if else statement used to do?

4) What should be done if we wish to have more than one statement following the if or the

else?

5) What are the certain cases where the switch statement can only be used?

6) What are the three types of loop given by C?
7) What does the while loop do?

8) What does the for loop ensure?

9) What is the break statement used to do?

10) Where does the continue statement work? How?

Reading Material

Text

Note

Java Language Basics

Java is a powerful, cross-platform, object-oriented

programming language suitable for writing anything from a

Unit 5

Text Note
distributed application that runs on a corporate network to a
database-driven Web site to host your personal photo gallery. To
make it easier to learn, the Java language was designed to
resemble!! some of the most popular programming languages in | [1]ve. 14, 8L

use today, most notably C/C++. If you’re not a C/C++ expert,
however (and most Web developers aren’t), the language can be a
little intimidating[z]. In this article, I’ll bring you up to speed on
the basic syntax of the Java language, including variables, data
types, operators, and control structures.

1. Variables

Here is the listing for the program I helped you create in the

previous article:

1 /**

2 * Hello.java

3 * A simple Java program

4 */

5

6 class Hello {

7 public static void main(String[] args) {
8 // Print a couple of one-line messages
9 System.out.println("Hello, World!"™);
10 System.out.println("This is a test.");
11 }

12}

This is an exceedingly simple program, as Java programs go,
and I’'m sure you don’t need me to tell you that it’s quite useless.
What good is a program that prints out the same two lines every
time you run it? At the very least™], a program should perform
some kind of useful calculation, right?

To be able to perform calculations and do useful work, a
program must be able to manipulate data in some fashion. Like
most programming languages, Java lets you store data in
variables. A variable may be thought of simply as a named
location in memory where data may be stored. Since different
kinds of data may have different storage requirements, Java
requires you to specify a data type for every variable that you
create.

Let’s look at a basic example to help solidifyw this concept

[2] adj. & NIETER), 4N

AR

[3] at the very least: %71,

Heh; e

[4] v. LI

1

0

110

N/

EREBEWIELAEE (52 kD

Text

Note

in your mind. Say you were writing a program that was
performing temperature calculations for a laboratory experiment.
Many such experiments take the room temperature into account in
their calculations, so your program might need to store the room
temperature in a variable. The following code creates a variable
for storing whole numbers called roomTemp, and then assigns it a

value of 20:

int roomTemp; // Create integer variable

roomTemp = 20;// Assign the variable a value of 20

For the Americans in the audience who are used to seeing
temperatures in Fahrenheit"’, 20 degrees Celsius'® is 68 degrees
Fahrenheit. int stands for'” integer (programming lingo[g] for a
whole number[g]), and is the data type of the roomTemp variable.
So as you can see, creating a variable is as simple as typing the
data type followed by the name of the variable. Variable names in
Java, like methods, are not capitalized by convention, but it’s
okay to use uppercase letters within the variable name to make
them more readable. This is why I chose to name the variable
roomTemp, instead of RoomTemp or roomtemp, or some other
variation on the theme.

The second line assigns a value to the variable that was just
created; specifically, it stores the number 20 in the variable. The
equals sign (=) is called the assignment operator[lo] because it is
used to assign values to variables.

You must always create a variable before assigning it a
value, and you’ll usually want to assign the variable a value
before putting it to use. Trying to assign a value to a variable that

[11]
an error

does not exist will cause the Java compiler spit out
message when you try to compile your program. Rather than
automatically creating the variable for you, as some other
programming languages do, Java errs on the side of caution by
assuming that you have mistyped[lz] the name of the variable. This
helps avoid bugs due to simple typing mistakes.

A newly created variable does not have a value. For example,
until we assigned it a value of 20, one might assume that the
roomTemp variable had some default Value[m, such as zero. In

fact, it did not. A variable with no value is said to be null. If you

[5] adj. IR 0. 4
39;3

[6] adj. $EICH n. HEIGEE
[7] stand for: 103, 10k
[8]n. ATif
[9]

9] whole number: %

[10] assignment operator: /it
HIZHTF

[11] spit out: Ff:H
[12] ve. %k, H5REN,
R UL T

[13] default value: ZRIN{H

Unit 5

Text

Note

have trouble getting your head around something having no value
at all, you could instead think of null as a special value that is
assigned to all newly created variables, no matter their data type.
Attempting to use a null variable as if it contained a value is one
of the most common types of programming mistakes that cause
programs to crash. That goes not only for Java programs, but also
for programs written in other languages such as C/C++.

A shortcut exists for creating a variable and assigning it a
value on the same line. The following code is equivalent to the

two lines we saw above:

int roomTemp = 20;// Create variable and assign value

Once created and assigned a value, a variable may be used
anywhere the value it contains might be used. Let’s look at a
simple program that prints out the room temperature as stored in a
variable. Open your text editor and type the following (remember,
don’t type the line numbers), then save the file as
PrintRoomTemp.java:

1/

2 * PrintRoomTemp.java

3 * A simple Java program that prints out the

temperature
4 */
5
6 class PrintRoomTemp {
7 public static void main(String[] args) {
8 int roomTemp = 20; // Room temperature
9
10 // Print out the temperature
11 System.out.print ("Current room
temperature: ");
12 System.out.print (roomTemp) ;
13 System.out.print ("degrees Celsius\n");
14 }
15 }

This program is a lot like the Hello program we saw above,
with a few notable exceptions:
Line 8: The first thing this program does is to create a

variable called roomTemp and assign it a value of 20.

1

1

1

112

N/

EREBEWIELAEE (52 kD

Text

Note

Lines 11—13: In Hello, we used System.out.println(...) to
print messages on the screen a line at a time. In this program, we
have used System.out.print(...) instead. The only difference
between these two commands is that println prints a line break at
the end of its output, so that the next character to be displayed on
the screen will appear at the start of the next line. Print doesn’t
add this line break, so several print commands may be strung
together to print a single line on the screen.

Line 12: This is an example of using a variable where a value
would normally be expected. Everywhere else that we’ve used
print or println, we’ve fed it a string of text (surrounded*! by
double quotes) as the exact value"™ to be printed out. In this case,
we’ve given it a variable name instead. For the print command to
know what to print out, it has to look inside the variable for the
value stored within. So this line just prints out whatever value is
stored in the roomTemp variable at the time"®.

Line 13: Since this print statement represents the end of the
line of text that we want to display, you could use a println instead
to output the requisite line break. Instead, I elected to stick with a
print statement to demonstrate how to output a line break without
using println. Notice that the text string to be printed out by this
line ends with \n. This is a special character code that, when
printed out by Java, gets converted to a line break!'”). If a situation
arises where you want to actually print out a backslash!'®!
followed by the letter “n”, you must preﬁx[lg] your backslash with
a second backslash (i.e. “\\n””). The first backslash cancels the
special meaning of the second. In other words, \\ is a special
character code that gets converted to a single backslash when
printed out, so Java no longer sees the \n as a special character
code.

Compile the program as wusual by typing javac
PrintRoomTemp.java at the command line, and then, assuming
the compiler didn’t point out any typing errors, run the compiled
version of the program:

D:\java\JavalanguageBasics>Jjava
PrintRoomTemp Current room temperature: 20 degrees

Celsius

Although there were a few new tricks in this program, its

[14] vi. o]
[15] exact value: HERfTH

[16] at the time: 240

[17] line break: #4775

[18] n. XAkt
[19] n. HYZ

Unit 5

Text

Note

main purpose was to demonstrate how to use a value stored in a
variable. In this case, we printed the value out, but as you’ll see in
later examples, variables can be used in many other ways as well.

2. Data Types

In the previous example, we identified the roomTemp
variable as being of the int data type, meaning that it could store
integer (whole number) values. Now let’s say you keep your
laboratory a little warmer than most, so you wanted to record a
temperature of 22.5 degrees. You might modify line 8 of
PrintRoomTemp.java so that it read as follows:

int roomTemp = 22.5; // Room temperature

If you tried to compile this modified program, however, you
would see an error message much like this one:

D:\java\JavalanguageBasics>javac

PrintRoomTemp. Jjava

PrintRoomTemp.java:8: possible loss of precision
found : double

required: int

int roomTemp = 22.5; // Room temperature

1 error

Java is telling you that the int data type can’t store the value
22.5, and that you should instead use the double type, which is the
Java data type for storing floating point numbers (numbers
requiring a decimal point[zo]). The message “possible loss of
precision[zl]” refers to the fact that the int data type could store 22
or 23, but not 22.5; that is, int does not provide the level of
precision required to represent the value you’re trying to store.

So to allow for precise temperature values, you need to

declare™ the roomTemp variable as a double instead of as an int:

double roomTemp = 22.5; // Room temperature

Try this corrected line in your program, and you should see
the expected output.

Java provides a handful of”’! data types for use in your
programs. Here’s the complete list for the technically minded:

boolean: true or false

char: a single 16-bit Unicode character”"

[20] decimal point: /N A
[21] n. ¥5#

[22] vt. 7]

[23] a handful of: —#

[24] Unicode character: 4t
—hth

1

1

3

FRERTWRELAHE (F 25D

Text Note
byte: an 8-bit signed integer[zs] [25] signed integer: £S5
short: a 16-bit signed integer B

int: a 32-bit signed integer

long: a 64-bit signed integer

float: a 32-bit floating-point number

double: a 64-bit floating point number

In case you’re wondering what the number of bits means for
these various data types, basically the more bits a data type uses,
the more different values it can store. Thus, long variables can
store larger numbers than int variables, and double variables can

store more precise values than float variables. In most programs

you’ll be able to get by using int, double, and boolean.

SEIFEX

T EmIE

WAL GEF A5 A AR m g i) 245 WK A LE4 v SRR eI AS Y 1 7
PRI U BN FE SRS o XA LU G RS e, el LOE 8w s m,
H & g 3 — AN mT DUSEIUIEEAT A R o S S5 ARS 1 R 75 2EVF 2 U Tk R
OGN PR € IR SRR A SO B R) il

AT TR, e G BN AR A A R i — AN B

TE R LORERR () B H Bl o 00 1, T DUX PR S BB (FTAN T — MR HHA
BEPAT IHLZARD R 2 B A B A A7

WAL IEHAT AN Z 4R 2, WS HEIEF R 2R, FETR_TRY . iy
TH LG LU R =AM — LA Sk LR T e R AR O 5 (R
AL ndedi” bRUEZE AR IO o IXANERS HABVF 2 HRATIEAN R, 57 D o Jo 20 i
B AT TR UER) CBRBUNEHIRD IAEER, BnT DRy “FRF 7 8“8 1T
Jifi 7

HET S — N 242, 'S 7 s 55 0 i &R P B R EE 2 KM
Wi o XA T8 5 25 B R IR —IR IR AL

1. BF A

THR MR SO g 5 TV N o AT TAEIE R A4S TR i FER UL
PR R B g5 RS e BAFIRR. 05 S0 RGE R4

Unit 5

2. wIZES

AN GBS 5 SRS R g A XU (U il fye X0 o BRI L 5 N5 1 2 TR
F, WMAFBER. SRS IG5 =07 A A R DL A N i 5% o e BRATL) A& 1k
PRGN T RS R FETE T . EEAT LN . &5 DHRR 2% TITHES
(FEST EALABN . 105 5 G i 1A 0 DL TS 5 9 5 IR AT 2850%

3. Bikimiz

3.1 BVEME

VSRR 0 AR AN TR Sz b, 5 BEOCVE I e X 25 2 1 il 4k HE A R I 4
PIFSRIE . Ak, FVER K O idiEnds, OB RPATHIN AR N A EAE, 57— 5
HOEMANMREL . ALK IR BB Z I A I EE LI k. JHiE % 18wt
J7 %, IR N A AEFIPERE .

BRI FEIE SRR A . P AT NP, P IXBEIEMRIE A1 £ 10
SIS TR AT DA 2 M g e o NP 307 2 T TR ff ok 7 6 WFFER I, 152 NP 5L LAAE
2 TN T A e 4 oy ORI R AT R n) A, IR RT DA S, —OROR L, DU
I3

32 JjikiE

FEAN AT I H TF R B — D H N A2 TG SR b, ARG R BATFIHEE GO

S UK BEAT 55 AT B — I S A VE 2 AR 5. R I8 SRk o B g v 2 F 4
I3 .

i FH P AR e A A T) 6 S a0 AT R U M AR R SR B B He o G TR 5 A I P 3 T
MR RE,

s P AT IR R B AR R SR — I R AR (ER E2850) .

PATEARCFEGE T (im0 G md). REuE 5 L& EiES .

W AT % Visual Studio M1 Eclipse iX#£(¥) IDE #EATUIX. AR gdb 47
TR

3.3 RIS MOH

B DA G R 5 R AT IV 5 R AR PRI () o S0 Rty o f10 B P R 24 55 2 Al
WATH) (i, Cobol 7EAMV A SR HE, M T KA E ML Fortran Al T TFE, 1fi
C TN RG), L8 5 Lign's 2 RN I FE R

B S AT R O VAR T B4 S OZ 05 5 RIS 5, R TE S B P e
H ONBTE S X TR A T4 KD, Mk D HZIE 5 9 'S AR P AT 40 (AT BE 2 (K A115 Cobol
XRER R TE = PO,

3.4 PR

SPRFANFEE Gk, AR EEES, FOVERIIFEFEAE L. 5 CHFIE
GiE T, BB AN RGP, BROA R R b ds i . BRRIREN BRI AR 1k
WAL X AL R IR RIAE IR o SR vh s o] REBR MO I W AF X8, IR 5 1R — A58 AN H

115

FRERTWRELAHE (F 25D

IFEFATIF R, Kk, 1% Valgrind. Purify 5§ Boundschecker iXFE /)P A7) Fc T 2% H
CHHE S HHTIARAS T R A& L0 o 1% Java, PHP FI Python X K8 5 0 LB 1FFE 5 0
BRKZHO2ATIHE R, (HA] GEILAUN S HBBRAIR, &R P IS T . AEPAT I
AR ZR Cangedls 2205) 8O /O AbEE) Yoy, X&nT LAES2 . HERR AR Bk T
FRE AT . Bltn, AR Java BN T 2 M A EoR, SisEisfr Hinmg
BRSO A LA .

