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Comments on My Three Theses

Chen Ning Yang

Professors B.F. Zhu and R. Dong proposed to publish the 3 theses which I wrote in
the 1940s. Each of the three was very important for my later research work, important
in very different ways. So I thought detailing their respective influence on me may be

useful for graduate students at the beginning of their careers.

1942 thesis for my BSc degree

At the Southwestern Associated Uni-
versity where I matriculated, 1938 to 1942,
students were required to submit a thesis
for their BSc degree. I had taken a course
in quantum theory from Professor T. Y.
Wu (5 KHR). So I went to him asking him
to be my supervisor. What then happened

I had described, as follows!:

he gave me a copy of an article With Professor Wu, 1982 in StonyBrook.
by J. E. Rosenthal and G. M. Murphy
in the 1936 volume of Reviews of Modern Physics. It was a review paper on
group theory and molecular spectra. I was thus introduced to group theory in
physics. In retrospect I am deeply grateful to Wu for this introduction, since

it had a profound effect on my subsequent development as a physicist.

The importance to me of this early introduction to group theory’s role in physics
cannot be overemphasized. And I was deeply aware of this already in the early 1950s.
In October 1957, one day after I learned I was to receive the Nobel Prize jointly with
T.D. Lee, I wrote to Professor Wu?:

'C.N. Yang. Selected Papers 1945-1980 With Commentary. Freeman and Company (1983), p. 5.
2C.N. Yang. Selected Papers 1945-1980 With Commentary. Freeman and Company (1983), p. 41.
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At this moment of great excitement, that also calls for deep personal
reflection, it is my privilege to express to you my deep gratitude for your
having initiated me into the field of symmetry laws and group theory in the
spring of 1942. A major part of my subsequent work, including the parity
problem, is traceable directly or indirectly to the ideas that I learned with you
that spring fifteen years ago. This is something that I have always had an urge

to tell you, but today is a particularly appropriate moment.

1944 thesis for my MSc degree

This thesis was written under the
direction of Professor J. S. Wang (L AT
#%). Tt consisted of two papers on the spe-
cific heat of alloys, using approximations
which were very popular at the time. The
main ideas of such approximations are now
called mean field theory. Neither paper
made any impact in the field, but they did

introduce me to statistical mechanics, in

Professor Wang, early 1980s in StonyBrook.

two important ways:

(1) T was deeply impressed by Gibbs. I still remember vividly today reading his
papers on the phase rule in an obscure journal published in Connecticut. [It is amazing
that such an obscure journal was in the library of LianDa.] More important, his little
book Elementary Principles of Statistical Mechanics converted me to an ardent admirer

of his. I was to write in 19633:

The beauty of his Elementary Principles of Statistical Mechanics is sheer
poetry.

(2) Statistical mechanics became one of my two major areas of research work. I still
remember today Professor Wang excitedly telling me, one day in 1945, the breakthrough
Onsager had made in the Ising model. I tried to understand this breakthrough, first
in Kunming, later in Chicago in 1947, both without success. But finally in 1949, in a
station wagon ride, I learned from Luttinger of a new paper by Kaufman and Onsager.

And that led to my lifelong interest in statistical mechanics.

3C.N. Yang. Selected Papers 1945-1980 With Commentary. Freeman and Company (1983), p. 71.



Comments on My Three Theses

1948 thesis for my PhD degree

During the first 9 month of 1946 I worked
closely with Professor Teller. He had around 6
or 7 graduate students, and met us every week
or two for lunch, to discuss our research. He also
asked me to grade exercise papers of his students.
So I had ample opportunity to observe his style
of doing physics. He had very good physical in-
tuition, especially about symmetries in atomic,
molecular and nuclear physics. But he lacked
patience to fill in the logical steps behind his in-
tuition. For example as early as 1941 he had
made, in a paper with Critchfield, statements

about complexities in nuclear reactions involving

particles with spin, but did not give any proofs.

I began to think about how to supply complete

With Professor Teller,
1982 in Brookhaven National Laboratory.

proofs.

In the late 1940s low energy nuclear physics
was one of the most active fields. In particular there began experiments about correla-
tions, such as 3—y and y—y correlations. Theoretical calculations were published about
such correlations, showing very surprisingly that the final results often were very simple
after unerpected cancellations. I did some of these calculations and soon realized that
the cancellations must be mathe-
matical consequences of the spher-
ical symmetry of nuclear physics.
But to substantiate such a state-
ment required detailed mathemat-
ical analysis. This I succeeded in
doing after a few weeks of analysis,
and that was how my PhD thesis

came about.

This thesis greatly increased

With Professor Teller, 1990s.

my appreciation of the power of
symmetry considerations in understanding natural laws. It happened that to study
the newly discovered “strange particles” it was necessary to first determine their spin,

parity and other quantum umbers, i.e. their symmetry properties. Thus I was able,
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one year after my thesis, to publish a paper on the spin and parity of the 7° meson.

This paper made me famous because it was in direct competition with L. Landau.

I should mention here that this 7° paper used heavily field theory, which I had
learned, very thoroughly in 1943-1945, from Professor S. T. Ma (& {1:1R).

In Chicago I was interested
in using symmetry considera-
tions not only on experiment re-
lated problems, such as those in
my PhD thesis, but also on a
more fundamental problem: the
basic equations governing inter-
actions between particles. Thus
in 1947 I tried to generalize
Weyl’s gauge symmetry to non-
Abelian groups. This effort met
with smooth sailing at the be-
ginning, but soon got into messy

technical problems, and I had to

With Professors Wu and Ma, 1949.

give up. Fortunately I did return to it in 1954, at Brookhaven with Robert Mills. We

succeeded in overcoming the technical difficulty and published a short paper on it?.

That paper has now become one of the most important papers in physics after WWIL

4C.N. Yang. Selected Papers 1945-1980 With Commentary. Freeman and Company (1983), p. 19.
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Group Theory and the Vibration of Polyatomic Molecules

GROUP THEORY AND THE VIBRATION
OF POLYATOMIC MOLECULES

Cheng-Ning Yang (k)

INTRODUCTION

Informations about the structure of molecules can always be drawn from the anal-
ysis of their vibrational spectra, but owing to the mathematical difficulties involved in
the theoretical calculation, only very simple types of molecules can be studied. The
method developed by Bethe! in 1929, and then more completely by Wigner?, however,
removed considerably this difficulty. It is our purpose here to present the method
together with some of the developments after them. A new method of finding the sym-
metrical coordinates is given (§4), in which the symmetry is preserved from step to step
in spite of the existence of redundant coordinates. The theorem in §5 which renders

the calculation of the degree of degeneracy very simple is also believed to be new.

The Symmetry of a Molecule

§1 MATHEMATICAL EXPRESSION OF SYMMETRY

There are reasons to suppose that the nuclei in a molecule arrange themselves in
symmetrical positions when in equilibrium; i.e. some operations (Consisting of reflec-
tions and rotations) bring the molecule into itself. (For molecules containing isotopes
this statement must be slightly modified. cf. §18) If we choose a set of rectangular
coordinate axes with the origin at the centre of mass of the molecule in equilibrium,

each covering operation C can be represented by an orthogonal matrix I, (order: 3 x 3)

X X
so that the point | Y | is brought to I. | Y | by the operation. Let 21, 2o, -+, %,
Z Z

be a set of coordinates specifying the relative positions of the nuclei (e.g. the distances

between the nuclei and the angles between the bonds) in the molecule. When the nuclei
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vibrate about their positions of equilibrium, these #’s vary (cf. §6). Let Ry, Rs, -,
R, be their increments. Further, let x1,y1, 21,22, - , TN, Yn, 2y be the increments of
the rectangular coordinates of the N nuclei. For small vibrations the R’s are linear in

the x’s, y’s and 2’s:

R1 €1
R y

R= _2 = BY, where € = .1 (1)
R, ZN

B being a constant matrix of n rows and 3N colomns. Now after the operation C, the
molecule is indistinguishable from its original self, and we have a new equation obtained

by writing (1) down for the new molecule:
R = B¢ (2)

Here ]C%’s are the coordinates of the molecule which will be brought into coincidence
with R’s by the operation C, and

To-11
I. Yc-11

zZc-11

xc—lN

I. Yo-1nN

ZC-1N

where C~1i is the nucleus which will become after the operation C' the nucleus i. Let

Z. be a square matrix of order 3N with the elements
iw(Zc)jw = 05,C—1iy za:(Zc>_]y =0 etc. Za] = 13 2) e 7N)
I,

I
and let P, stand for _ , then (2) and (3) give

I
R = BP.Z.%. (4)

This equation holds for every operation C and is the mathematical expression of the

symmetry of the molecule.
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EXAMPLE Consider three equivalent nuclei forming an equilateral triangle. Let
C be the operation: Rotation counterclockwise through 120° about O. Then

c1'1=3 C01'2=1, Cc'3=2,

and
! 11 0
0 i 0 i 1
,,,,,, B L 1
1 0 ! 2 2
Z. = 1 i 0 i 0 L= V3 1
0 1 | 2 2
****** o, 0 0 1
0 : 1 : 0
01

Let R; be the increment of the distance 12.

V3.1 V3

1
R =~ —— Yy, — =g — —UYa.
1 2:171+2y1 2552 2y2

Then él is that of 31, and

c V3 1 V3
R —§$1+ 2y1+§I3— 2?/3-
Thus
1 V3 1 V3
B=[> X2 _ _ Ve
<2 5 0 5 5 0 0 O O)

(4) becomes the identity

1 V3 1 V3 1 V3 1 V3
_2x1+2y1+2x3_2y3:< Pl P

z3
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§2 FUNDAMENTAL RELATIONSHIP

In some instances the coordinates R, Rs, ---, R, are sufficient to determine ]?1’1,
]c%g, s fzn for all covering operations C. This is the case if (i) the R’s contain only
Ry
complete sets of equivalent coordinates (e.g. in the last example when R, = increment
R
312
of 123 ); or if (ii) the R’s are all that are necessary to describe the internal structure of
231
the molecule. In both cases we have for small vibrations ]Li’ =A.R, where A, is in case
(i) an orthogonal matrix having as elements 0 or 1, and in case (ii) a matrix of order
n X n. By (4),
BP,Z% = R= A.R = AB%.

But ¢ is arbitrary (cf. §6), hence
BP.Z. = A.B. (5)

This is the fundamental relationship on which all the following deductions are based.

§3 GROUP PROPERTIES

To make further developments we notice that the covering operations C' form a
group and that the P.’s, Z.’s and A.’s each form a group isomorphic” with it. The
group is known as the “point group”. They are of such importance that their properties

have been investigated in detail.?

Choice of Internal Coordinates

§4 INDEPENDENT REDUCED COORDINATES

We first choose the coordinates Ry, Ry, ---, R, so that they contain only complete
sets of equivalent internal coordinates, and such that they are more than necessary for
the determination of the structure of the molecule. The simplest way is to choose the

increments of the internuclear distances and the bond angles as the R’s. In the example

“Let C’'C be the resultant operation of first operating C and then C’, we have

P,.=P.P., Z..=Z,yZ., but A, = A A..
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of §1 we may take the increments of the bonds 12, 23 and 31 as Ry, R, and Rs; or those
of the lengths O1, 02, O3 and the angles 162, 203 and 301 as the R’s. The matrix B
can now be determined (§§11, 12). Evidently our choice belongs to the case (i) of §2,
so that the A.’s are orthogonal and have as elements 0 or 1. It is plain that ;(A.) ;= 0
if R; and R; are not equivalent. We shall make use of the following theorem in group
theory®:

If A, form a group of orthogonal matrices, and W(a = 1,2,--- , k) are the irre-
ducible orthogonal representations of the group, there exists an orthogonal matrix M
such that W, = M A.M~" is of the form

e 0
Wl
w} (6)
W2
0 Wk
@
. Q2 . 4 T
We define” @ =| = | = MR as the “reduced coordinates”*. Evidently
@n

Q=MR= MAR = MAMQ =W.Q.
Now not all the @’s are independent. To select out the independent ones we need the
following theorem:
THEOREM It is always possible to drop out some of the Qs so that
(i) the remaining ones are all independent,
(ii) the dropped ones depend on the remaining ones,
and (iii) the remaining ones belong to complete blocks of the group of matrices W..
P

K
Because of the properties (i) and (ii), the remaining coordinates Z = ) are

H3N -6
called the “independent reduced coordinates”, and from (iii), Z = A.# where . is

“We assume here that @ is real. There is probably no difficulty in handling complex coordinates, but they are

not necessary unless molecules of symmetry C,,, Cy,p or S, (n > 2) are studied.
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obtained from W, by dropping some blocks. These coordinates may also be obtained in
other ways, and have been given various names by different authors. They are the “in-
ternal symmetry coordinates” of Wilson” and the “geometrical symmetry coordinates”
of Rosenthal and Murphy®. The relation between % and the “symmetry coordinates”
of Howard and Wilson'!? will be given in §14.

PROOF OF THE THEOREM  Since () is not entirely arbitrary, there exists a

matrix H of order v X n so that

HH =1, HQ=0, (7)

where I is the unit matrix and the ’ stands for “transposed”. We may prove that the

H
rank of H is v and that there exists a matrix H; of order (n —v) X n such that
H,
H 0
is orthogonal. Put Q= , then
H, 1
! !/ O !
Q = (H' Hy) = HiQ1. (8)

1

We may suppose that v = n— (3N —6) so that (); is arbitrary. The equ. HQ = 0 must

be invariant under an operation C"

0=HQ=HW.Q = HW,H.Q,.

Hence
HW_.H] =0.
Thus
H HW_.H' 0
W.(H H) = ) .
H, H\W.H' H,W_.H;
This matrix is orthogonal (for and W, are both orthogonal). Hence
H,
HW_.H' 0
We(H' HY) = : 9)
H, 0 H\W_.H;

Thus HW_H' is orthogonal and forms a group isomorphic with the one formed by C;
ie.
(HW.H"Y(HW.H') = HW_ . H'.
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By the theorem quoted above there exists an orthogonal matrix J such that JHW . H'J' =

w, is of the form (6); i.e. if the “untermatrices” of W, are
o8We) g = 00 0pp WS, a=1,2,---k, B=12, n,,
those of w, must be
ab(We) iy = Oaa O W, a=1,2,--- k, b=1,2,--- .

By (9), the irreducible blocks of w, must all be that of W, hence p, < n,. Now
! A H ! H
(JH)W.= JHW.(H' Hy) I = (JHW.H' 0) = =w.JH (10)
1 1

i.e.

ab(JH) g W =W ap(JH)ap-

c

But W2 is irreducible, hence®
b (TH) s = b0 1121, (1)

where b/lg is an ordinary number. Since JH is of rank v, the submatrix (b/\g) (b =
1,23, ,pta; B=1,2,3,--+ ,ng) is of rank p,. Thus for every a there exists a set K,
of u, integers all < n,, such that the square matrix (b/\g) (b=1,2,-++ ,pa; B in K,)
is nonsingular. Hence JH may be divided into two untermatrices, one (of order v x v)
composed of those untermatrices (11) for which 8 is in the set k,, and the other those
for which f is not in K,. The former is evidently nonsingular. Let Hy and H3 be the
corresponding untermatrices of H = J~!(JH). Evidently a transposition of columns
may bring H into the form (Hy Hj;). Now the constraint on @ is H@Q) = 0. Hence a

corresponding transposition of the rows of () bring it to <Q2> so that
3

H>Qs + H3Q3= 0.

Since Hy is nonsingular, ()3 may be chosen as the independent variable, ()> being
dependent on it. Thus the latter can be dropped and the conditions (i), (ii) and (iii)

are satisfied.

§5 CALCULATION OF SPUR (2,)

Suppose that the constraints on the R’s are given by

PR =0 where 29' =1. (12)
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THEOREM
Spur(2L,) = Spur(A.)’ — Spur(74,2") (13)

This theorem makes the calculation of Spur(#/,.) very simple (because the elements of
A. are 0 or 1), and before the transformation from R the @ is carried out. Also it

enables us to calculate the contributions of the different constraints separately.

PROOF The constraints on Ry, Ry, - , R, are ZR = 0. Hence we may take the
matrix H of (7) to be ZM’. With the notation used there we have

Q= HiQ = HiW,.Q = H\W,.HQ,. (14)
Since the #£’s are all independent, there exists M; such that Q, = M;Z%. Hence
Q) = M# = My2,% = My, M, ' Q).
On comparison with (14) it follows that H,W,.H}, = M2, M,". Thus

Spur (%) = Spur(H,W_.Hj)
H
= Spur [(H ) W.(H' H{)] — Spur(HW_.H')
1

= Spur(A.) — Spur(2A.2').

EXAMPLE Consider the molecule CH3Cl. Take

R1, Ry, R3, R4 = increments of the distances CCl, CH,, CHg, CH,,
Rs5, Rg, R7 = increments of the angles ClaHa, ClaHg, CI(A]H,,,
Rg, Ry, R1¢p = increments of the angles HﬁaHv, HVGHQ, HaaHﬁ.

Cl

The constraint is
[Rs + Rs + R7]f + [Rs + Ry + R10] = 0,

where f is a constant. Thus

[ 1
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The theorem leads to

Operation C Spur(A,) | Spur(ZA.2)* | Spur(2,)

No Motion : Cq 10 1 9
. _ 120° : Gy

Rotation about CCI through 1 1 0
240° : Cy
CICH, : C,4

Reflection about the plane | C1CHg : Cj 4 1 3
CICH, : Cg

The Kinetic and the Potential Energies

§6 CHOICE OF AXES

Ry
Suppose that '2 = R are the increments of 3N — 6 independent internal
R3n—s
x1
coordinates. For small vibrations, R = B%, where ¢ = : is defined in §1.
ZN
Suppose that the equilibrium positions of the nuclei are, in rectangular coordinates,
(X4, Y1, Z1),(Xae, Yo, Z3),-+- , (XN, Yn, Zn). Let my, ma,- -+, my be their masses.
Write
my 0 0 mo 0 0 0
0 my 0 0 Mo 0 0
0 0 my 0 0 Mo my
F= 0 my 2y -mY; 0 Mo Zo —mgpYs -+ —mpyYn
—-m1Z; 0 miXy —maeZy O meXoy - myXn
myY —-m1X; 0 MaYs —moXa 0 -+ 0

* From this it is immediately seen that any constraint having the same coefficient for equivalent coordinates
contributes 1 to Spur (ZA.2").
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o O

Then the first column of B F’ is the matrix B which is the

0
value of R when all the nuclei are displaced by 1 unit of length along the X-axis. But
1
0

0

the R’s are the increments of internal variables, hence B = 0. In the same way

we can show that
B F'=o0.

1
my

We have thus far described the the molecule in a certain system of rectangular
coordinates. But when the molecule moves and rotates in space as well as vibrates, there
remains an arbitrariness in fixing the coordinate axes to the molecule. The following
method of choosing these axes is, however, the most preferable. The 3N — 6 internal
variables Ry, Ry, - -+ , R3n_g is determined uniquely from the structure of the molecule.

We define x1,91, -+, 2y by

so that
F¥% = 0. (16)
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From the definition of B, we conclude that a system of axes of reference can be found so
that the positions of the nuclei are (X; +x1, Y1 +y1, Z1 +21), (Xo+ 22, Yo+ Yo, Zo+ 29),
o (Xn+ 2N, Yy +yn, Zn + 2n) when the molecule is not very much distorted from
its equilibrium structure. We have thus 6 external variables specifying the position and
orientation of the axes in space and 3N — 6 variables Ry, Ry, -+ , R3n_g specifying by

means of (15) the positions of the nuclei with respect to these axes.

§7 THE KINETIC ENERGY IN TERMS OF R

Equ. (16) expresses the facts that the origin of our moving axes is at any time the
centre of mass of the molecule, and that the moment of momentum of the molecule in
this system of reference is of the order of mad. Thus if the molecule rotates in space

with an angular velocity w about its centre of mass, its kinetic energy is

1
Tcentre of mass T Trotation + 5 Z m; (xZQ + y? + 212) + term ~ mxzw.

But
Trotation = (K.E. of rotation if € = 0) + term ~ mw?zX.

Now Tientre of mass + (K.E. of rotation if ¥ = 0) depends on the external variables only
(together, of course, with their time derivatives). And in a gas, due to thermal agitation,
wX ~ .

Thus in the first approximation the equ. of motion is to be derived from

(cf. §§15, 16)

B —17 mi B —1 R
1 1.
T=25> mi(i+9;+2)=5(R0 :
oo mi(dt +it 42 = g0 L
mN
But
1
. B B’ 0
B [™ 1
(B/ F/): myN L
F L my
my 0 F F/
1
Hence writing
1
G=8B B, (17)
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we have
2T = R'G'R.

§8 THE KINETIC ENERGY IN TERMS OF #Z

(18)

If we take the independent reduced coordinates #Z (§4) to be the R’s of the last

section, the results may be summarized:

R=LC, G=X L' W =RYG'A.
_1
Now by (5),
LP.7Z. =2A.L (%, stands here for A, cf. §4)
so that
1 1
G = . L' =% LP.Z, . Z'P L',
_1 _1
1
But , P, and Z, commute” with each other, hence
1
1
G =9 . LA, = AG,.
1
Suppose

(15(2[6)0/[3/ = 5010"5/35’W37 a=1,2,--k 8=12- ng,
where W is irreducible. (cf. §4) Since 2.9 = 4%/, we have
S ap( @) arpr = ap(@)arp W

Hence®

8Dy = oot 551

k

(19)

(20)

(21)

If W2 is of order d,, this shows that the nonvanishing elements of ¢ are in Zd“

diagonal blocks of which d, are identical of dimension n, X n,,.

“cf. §18.

a=1



Group Theory and the Vibration of Polyatomic Molecules

§9 THE POTENTIAL ENERGY IN TERMS OF #

The potential energy depends on the internal coordinates only. For small vibra-
tions, it is approximately equal to %%’ VR, where 2 is a positive symmetrical matrix,
because when in equilibrium the molecule has a minimum potential energy. The cov-

ering operations leave the potential energy unchanged:

%%’21@ _ %é"mé _ %%’2{’0%.

But &£ is arbitrary, hence
U =AU,
Thus we have, just as we had (21),

aﬁ(m)a/ﬁ/ = 60404’ ﬁ'[}ﬁ/a,[’ o = 1,2, e ,k', B = 1,2, s, N (22)

k
There are therefore totally Z n? independent constants in the potential energy, which

a=1
are usually unknowns.!!

Calculation of the Kinetic Energy

§10 THE TRANSFORMATION MATRIX M’
In §4 the orthogonal matrix M was introduced to reduce A.. Since

A 0
Ac = Ac2
0

where each A, belongs to a set of equivalent coordinates, (§4)

M, 0
M = M,
0

where M, is orthogonal. Hence W, = M, A, M is of the form (6), i.e.
1
W,

w}l
W, = *

cp
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Suppose that Wclp is of dimension d x d. Denote the first d rows of M, by

I(Mp)l 1(MP)2

L= ;
a(Mp)r - e (M),
where g, = no. of equivalent coordinates R of the p-th set.
Now
WepM, = M,A,,.
Hence
W/, L =LA,
Thus
L'L = A, L'LA., ie (L'L)Ay, = A,(L'L).

Hence

9p

Z (L'L); +(Aep)2 = Zl(Acp>t +(L'L)a.

t=1
There exists an operation C which brings the second coordinate of the p-th set to the

ﬁI‘St, for which él = Rg, so that 1(Acp)t = 6752, t(Acp)2 = 5t1~ Hence 1<L/L>1 = Q(L/L)Q.

Thus all diagonal elements of L'L are equal, and

1
Z"Y +(L'L); = *SPUF(L/L) = —Spur(LL") = i

=1 9p p p

Now d can be determined from the values of Spur (%), (cf. equ. (39)) so that this

relation facilitates the calculation of M.

§11 VECTORIAL NOTATION ”

1

The matrix ¢ = % £’ is calculated by first computing .Z. Now
1
Z is a submatrix of (). Hence !
KL = M, B, where M = some rows(M)all columns- <23)
Thus we have to find B first.
Now
R = BY%.
Write

(th Yt Zt):?tv (kth kBty kBtz):lE-
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Then Ry =), E . % In a similar way we shall write
t

- —
aﬁv(g)tZZQﬁv(Ml)klz:aﬁ’y‘gt; ’7:1727 7d0¢7 t:1727 >N (Cf (21))

k=1

§12 EXPLICIT EXPRESSION OF ,E 7

The use of the vectors ? is advantageous because they are independent of the
coordinate axes. Two kinds of R’s are commonly used:
(i) R = the increment of the bond between the nuclei ¢’ and ¢” in length. Evidently
= =
when € = €» =0, R = 0. Hence

direction of r-axis - —
Sy =0 for all t except t’ or t”.

If0 =yy = 2¢ = 240 = ypr = 2z, we have R =

x4 cos B, so that By, = cosf. Hence
S—’t? = unit vector from ¢’ to t'.
Sor = —S. (25)
all othergt are 0.

-
(ii) R = the increment of the angle ¢’ — ¢ — ¢”. Evidently all ? are 0 except Si, Sy
—
and Sy». Suppose that
— - =
St/:x/?+y/n/ +Z/</.

— —
; When Z =% =0,% = ?, we have, since t/

/ (}‘\ alone is displaced, R = % Hence 2’ = % Similarly by
/s NI considering the case when % = ‘Z =0, ‘23 = 7, we
// \rf’ e get ' = 0. Proceeding in this way we arrive ﬁiz;lly
g at the_ﬁ;rst line of_g26)i>\10w _]}% vanishes when %}, =

7 @ = Gy, Thus (S, + Se + S,) = 0. So that

| [’='lu1'm“h'“'rl - 1 — 1=
Sp ==&, Sp=-¢
€ g

Sy = —(Sir + S) (26)

all other ? =0

%
From (25) and (26) we can write down, for all k£ and ¢, the vector E from which S
may be calculated through (24).
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§13 KINETIC ENERGY IN TERMS OF THE §%S 7

%
We shall show however, that not all the S’s are needed for the calculation of ¥.
Take (5)
YP.z.=2.2. (27)

By (20)

Z apLyLebi e = Woopy, (L. is defined in §2)

t'=1
i.e.
aﬁgctrc - Wg(xﬁiﬁ-

Hence for any 8 and /',

F,c aﬁglt (x[ﬁ’gct Fc = aﬂcgﬁ/ aﬁ’czﬂta

C

so that
Spur(aﬂgc/t apLet) = Spur(aﬁiﬂt/ opZt)- (28)

Now by (21),
o 1
5951 = as%pr = ) as%y <mI)
P

p aB

<, (29)

where each p refer to a set of equivalent nuclei.

From (27)
a8(L)p p(FPe)p p(Ze)p = W ap(L)p-
Hence
as(L)p ap (L), = W sy ap L,
ie.
(apLp ap L)W = WiapLp apLy)-
Thus®

’ ap
apLpapLy = pby I, (30)
where € ;p is an ordinary number. From (29) we have,

o ]. ap
5951 = m—pﬁéﬂ, I (31)

p

Hence

5y do = Spur(apLy ap L)) = S (0p L) 0pLy) = O S (ap L, 0p L) (32)

tinp
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Now consider the sum of (28). Since ct goes over all values of ¢ in p when ¢ goes over

all the operations of the group,
SPur(ap-L aprLet) = Spur(asLy ap Lot ),
if t and ¢’ are in the same p-th set. Thus (32) becomes
55 do = g, 50w (051 09 L),
where t represents any nucleus of the p-th set. Substitute into (31) and make use of

(24). We obtain:
d

o 1 g = — —
BYpr = d. Z o Z aBySt * apy Sy (33)
P =1

m
P oy=

_>
Thus in calculation ¥ (,3%0 s = San’ 5gg‘,l) we have only to know ,z,S; for all «
(=1,2,--- k), B (=1,2,--- ,ng) and v (= 1,2,--- ,d,); but only for one ¢ in each p.
From (24) we see that not all S are needed.

Secular Equation and Degeneracy

§14 NORMAL COORDINATES

In terms of the independent reduced coordinates & defined in §4, the kinetic energy
and the potential energy are %,@’%’1@ and AU, (§88, 9) where ¥ is positive
definite. Let Ay, A9, -+, A3n_g be the roots of the equ.

NG~ - =0, ie |AI-T¥|=0. (34)

Then there exists a matrix L such that

9L =1, L VUL '= . = A

0 Asn—6

Put
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ZE IR EZOATS'S

we get immediately

. . ./ 3N-6 -2
2xkinetic energy = #'Y % =9 91 = Z /P (35)

i=1
2xpotential energy = Z'U X = ' A9 = Z/\Z-D??. (36)

” )

These coordinates 97; are known as the “normal coordinate” ’s. They are obtained by

first solving (34), thus getting J;; and then determining L from
LYY = AL. (37)

This L must be normalized by
LYL =1. (38)

The normal coordinates are then calculated from 97 = LZ.

Now we shall be able to see the role that symmetry plays in simplifying the calcula-
k

tions. Equs. (21) and (22) show the secular equ. (34) is factored into Z d, equations

a=1

of which d,, are identical and are of the n,-th degree. The labor of solving for the A’s
is considerably saved. Moreover, the no. of unknown constants in 27 is reduced.
The normal coordinates are also a special form of the “symmetry coordinates” in-

troduced by Howard and Wilson.?! The most general form of the symmetry coordinates
M is given by 9N = LW where

aﬁfa’,@’ = 5040/ ng/Uaa o = e k 5 = 1 2 Ng,
in which U® is orthogonal and z/3, form an orthogonal matrix when § and B’ range

over 1,2, ,ng,.

§15 SOLUTION OF THE PHYSICAL PROBLEM—CLASSICAL
THEORY

The Lagrangian is, from (35) and (36),

3N6

SLANEY
The equs. of motion are therefore
9N, + A9, =0, i=1,2---,3N—6.

Hence

9, = (91,), cos(v/Ait + ;).
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The frequencies of vibration are thus
VAL VA2 VAsn—6
2r 7 2x 7 2;m

This is correct only in the first approximation; but it serves to give almost all our

present knowledge about the forces within the molecules.

§16 SOLUTION OF THE PHYSICAL PROBLEM—QUANTUM
THEORY

Now ) )
-2 2
T:iz:mi, vzizyim,
The wave equation is most easily obtained from the variational formulation of the

problem:
. 0V 0y .

where g% is given by T = g;;4'47. Hence

Zl —h28—2+/\»9?2 W = Eip
AN A A

The electric moment in any direction is, in the first approximation

3N—-6

Dy + Z D91,

i=1
where D; is immediately calculable from (15). Thus the wave function and selection
rules, hence the frequencies in the vibrational spectra of the molecule, are the same as
those of 3N — 6 independent harmonic oscillators with coordinates 971, 975, - - -, M3y _g.

The frequencies are therefore exactly those obtained classically.

§17 THE DEGREE OF DEGENERACY

We have seen that the secular equ. (34) is factorized into d; identical equs. of
the ni-th degree, dy identical equs. of the no-th degree, ---. There must therefore be
ny frequencies each corresponding to d; different normal moods of vibration (d;-fold
degenerate). The nos. di, da, - - -, are accordingly called “the degrees of degeneracy”.

It is interesting that they can be determined together with nq, ng, ---, without

carrying out the calculation of the normal coordinates. For, by (20)

Z noSpur(W2) = Spur(2,.).
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But
Z Spur(W)Spur(W’) = 6,sh,

where h = order of the group. Hence

Ny = % Z Spur(2,)Spur(W). (39)

Now both Spur(W¢?) and d,, can be found® from a table of characters of the point group,
and Spur(#.) can be calculated through the theorem in §5, so that d,, and n,, are easily
calculable from (39).

EXAMPLE We consider again the molecule CH3Cl. (§5) From the left table of

characters we get n; =

Spur(W,)
Representation | d, — — — 3, ng =0, nz3 = 3.1t
C=2C1 | C=1C2,C3 | C=C4,C5,Cq
T follows that the secu-
%4 1 1 1 1 ) )
lar equ. is factored into
w? 1 1 1 -1 . .
3 cubic equs. 2 of which
w3 2 2 -1 0 . .
are identical.

We conclude that there are totally 6 vibrational frequencies, 3 of which are doubly
degenerate.

The no. of independent constants in the potential energy is (§9) Z n? = 18.

[0}

Other Developments

§18 ISOTOPE RULE ~

In the above example the no. of unknown constants in the potential energy is much
greater than the no. of observable frequencies, as is usually the case. The situation
is, however, not so hopeless, because the frequencies of the molecule with some of
the atoms replaced by their isotopes serve as additional data. The new molecule has
evidently the same equilibrium configuration and potential energy as the original one.
But in calculating its kinetic energy it must be remembered that all the results of §§1

to 7 are correct, (because they do not concern the masses of the nuclei) but that since
1

mi
now . does not necessarily commute with P,., (21) does not hold. The

1
my

secular equ. is therefore not factored as before. The vectorial method is still convenient.
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If the new kinetic energy matrix is denoted by ¢, from (34)

I, = |99 = |99,
I, = |99| = 12|19

Hence
1
< z'
w9 o
w19 v
< Z

1/
mN

§19 SPLITTING OF HIGH FREQUENCIES ”

Sometimes it is known that certain force constants are considerably larger than the
others, so that the corresponding frequencies of vibration are much greater than the
rest. To solve for the low frequencies we may make the approximation of putting the

large force constants equal to infinity.

Let
4., ¢ Y, U
@ — 11 Y12 ’ 27— 11 12 )
ggl gzg 2721 2722
We want to find the A’s when 27; — co. Now

’/\%*127’1 - I‘ —0,

_ 0 0
and when U1, — oo, & LN ( o ) Since
2

g1 = ,
(G0 G2 = In9 G2)
we get
0 (9,7,
/‘ ( )12 22 B » B I _ 0’
0 (Do — Dn%,"%2) Vo,
or
‘4(%2 ~ G095 ) Vo — I‘ =0,
i.e.

’/\(gQQ - gglglzlglg)_l - 2722 == O
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‘nreserved from step be ztes In spite of the existencs 31 redun-

GHOUP 'J‘I,EE:}EI ANL THE VIBRATIOR OF POLY.TOWIC MWOLECULES
Chang=Rine Yens {;’% e #J'
LIRTRIODUSTION [Iniormatlon: about the streosturs of molecules zan
dlvagy by draen feow the cnpalyuic of their vibrational speatra,
bt oaing to the mathematloel difficultias invelved in the theo-
retizul zalculation, orly very simpl:s types of malecules can ba
studieds The method develonad by Bethe! in 1929, an® then morae
eoanlately by '_i'.'j.&;n.-_-'r‘, howevar, removed considerably this difri-
ulty. It i our purpoue here &3 present the methad together with
goma: 31 the develoomenis altsr them. 4 new gethod of finding the
syamstirical eosrdinates ic givan {34), in which the eynoetey lo

dant coordinates.. The thearen in $6 which renderz the culoulsn-

tion ol the dagree ol J#:F_:uﬂn.ll’".‘:.:‘ljt':'.r:." ‘aimple iz wlso bellevsd to
be new,
- .

The Symmetry o a Wolaculas-

pove that the nusle: in a m2lecula arrange thepselvues in a&ruw'il'
itrical ositions when in equilibrium; i.ae, :gjmr;_,:.-,a_r.ut.i:*ii: { 2on-
sicting of roilection. and iylationz)bring the motsculz into
itzalt., (For milecules sontuining isotopss thiz statamant must
be Blightly modliflad. cf. §142) If we choose « seb ol rectangular
coordinate axes with the origin at the gentra of muss 2l the mo-
Igcule in aquilibrlusn, eu«sh covaring oparation C can be recrocan-
ted by arn ortrozonul sulrdx T (ardar: 3X3) 83 that the point [f}
1 brouzht t9 zfﬂ by ihe aperstion. szl R eRpsMa b2 a zat of
R e 1 goecifying the relative posltions 21 the muelei [(2.2.
the il=tercor| batw-on Lhe nuclei and the ingles betwesen the bonde)
ln th: maoleculs. Whan the nuelsi vibrate about their poaitiosns
oL wyullibriws, these 'z vary {of. 33}, "et HRy R hs tholr
THCLLGanE. purtnar, let Xdedie X Kl Ju be thy lnerasenils
2f the peetanguluar eodrdinates ol the U nuelai. For umall vifrk:
tioneg the B 5 oars line.r in Lhe oy gaoand } s

w=(- e  whee o=(F), (1)
B bains w conctant Wty L -'::1ll Rouows: and I oalomns. Noy gatar

P

R R s - . _'fl-...., e -'-"h"""‘-'-i\.._r_u e vt e T e L

Vg ’ A

‘;: *’?“_r s _-1 :p"" e .".‘.'. -... M-iﬁ_“ 5 z -||--'1|-u|.f " s .|.--_1—.-m_-?w f .

41 MATHEMATIOAL EXPRESETIN OF f¥Y.JMETRY There are reasons i sup=—
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-

ihe soerution ¢, the nolecule iz indistinguishuble from its ori=-
sinmal self, and we huve u new equation obtainsd by writing (1)
down for the new moleculea:

R=B%, (2)
Heio®#®8 _r¢ the coordinates of the molecule which will be brought

iats eaineidence with RE iperution @, and

(3)

whers €4  is the nvelem: 7ihien will become after the nperation
G the nuclome 4 . Lot E be o scuare swirlx of oerder 3N with the
slemenis ; .up"}d'.'%'.r"; & -'#"’.fj-ﬁ ate. 4:'1‘;""4""";; .
and lat T stund inor {‘x‘l}
then (2) und (3) give B=BRLS. {4)
Thiec eguation holds for every aperation C and is the mathematical
expression of the symmeiry ol the mnolecnls.
EXAdSLE Consider thres squivalent rglei forming an esuilateral

. 4 triangls. Let ¢ be the aperation; Rotation. coun-

terclockwise throngh 20" about © . Then
I'.'"i-S..1 ERmi, 3=z,

3 00 o o
and A P el i °
2 {1"3 ;._.) H T;. (,.# 'g ﬂ) s

LY o e 1
Let ® be the ilncrement of the distance F . “‘-'i’ﬂﬁ:«—lx.-"r‘g. 5
el

THen ® iz that of &, and \ ﬁ‘-“m’*fﬁ*i’ﬁ'F}'

Thus '=f‘§'§'=’r'§”¥-ﬂ-—d,a,n}-
(4) becomes the identity ;

; Roe kA
. .vfx,df’ﬂj-w,n‘f}- i+ Fa -4 Foos -}(:‘ n u),e.{i) p
* R
§2 FUNDAGENTAL RELATIONEHIF Irn some instances the coordinutes
BBy R arc sufficisnt to determine R.#.--R for all so-
vering operations C. This ie the case if (i) the ®'as contain
only eomplete sets of eouivalent coordinates (e.4. in the last
eXam-le wnen E:m;:m*mm. i @ }; or if (ii) the ®m'tc ure
all that are necessary to describe the internsl structurs of

the moleeule. In both cases we have for small vibrations Refg
whera A, is in caze (1) an srinogonal matrix having as elemonts

A
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. B
0 or 1, and in ease (ii) a mutrix of order nxm . By (4),
BLES =R= AR =ABg.
But % is arbitrary (cf. .7), hence
BEZ =AB, (s)
This i: the fundamentz]l reletionship sn which all the following
deductions are baszaed,

il GHOUP PROPERTIMES To make furtier developments we notice
that the eovering operations € form a grous and that the R's,B's d
and A = each form a gooup lsomorchic®with it. The group iz known |
¢ the "point group". They are of such inportance that their
properties have been investigsted in detail?

Choige of Intornsl Coordinates
54 INDEPENDENT REDUCED COORDINATES We firet choose the ooordi-
nates ®By, R 50 that they contaln only complete sets of equie
Yulent internal eoordinates, snd such that they ure more than
neceszary for the determination of the structure of the molegule,
The simplest way le to chosse the increments of the internuslear .

i distances and the bond ungles as the R'ws.lnbie example of il we

i may take the lncrements of 4ne bonds j3 , 53 and 37 as ® o, ®,

| and ®y i or those of the lengtrs JdMd &7 , 5%, 63 and the angles ;82 ,

! 285 uni My as tha®'s. The tutTix B can now be determined 1
{5511,12). EBvidently our choige belonge to the case (1) of §=,

.

t ' 62 that the A':c are arthogonsl snd have as= elements 0 or 1. It
ie plain that ':[Ad.‘?;'ﬂ if ® and 'IJ 4re ot equivalent, We shall I
take use ol the follawing theorem in group thesry®

If & form & groun of orthogonal gatrices, ana "{H'!IJ.-“*« 4
are the irredugible nrthogonal popresendations of the TIILT
thure exizts an orthogonal matrlx M such that We=pd N is of the

fo¥m ; T'E'u, o . (G)
l‘:'*..\_‘
o wh

¥ et '8 be the resultant ‘operaticn of first operuting C

and thspn o0 y % N3 Rava

Be=RBE., Z =EZ.Z X A =RAS.
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i
We definag® a.{%},nqas the "redused coordinates+* Evidently
i é-:mﬁ-mn-m‘ﬂﬁ=mq,

AW nat all e @'s are indshendent. Tokelent out the independent

ones wo negd the f91)swing LZ—;IT!;:':I'::.".:
IHLOREL It is always aoepible tn droo out e23me of ths @' ¢ =a
that (i) the remauining ones are all irdsnendent, J'J
(i1} the droozed onas degend on the remaining ones,

snd (iii) the remaining oneg belong to complete blocke of
toe group of matricec he .
Because o1 the properties (i) u.nld (Li), the remaining coordinates
®= (o J .
(Lii} " “Reag vhoerc @ 1 obialsed Iron We by drooning some blocks, ]
These coordinates may ales be obtained in ather wayes, and have i
teen given various names Ly differcnt authera. They are the "in-
lernal symmetry coordinates” of Wiison'! and the "geometrical sym-

drg cullad the "independrsiuged caardinates", and {irom

melry coordinates” aof Rosenthal und iq_urn'n;.". The relation between

® und ths "symmetry coordinates” -1 Howard and '.'Fl‘.:.-r:-.'..':ill bz 1

given in §1%, e ;

LEQQF O} TUE THEOREM Sincs @ ig not #rtiraly arbitrary, there

eriects a mutrizgnt j:;l-::':fy,m, 5 that HN=I, HG=o, (7)

wheres F Lz the unit mutriv apd tha o itande far "transposed®,

e may -l-_.mr_-a_;e that the rank o M 5 und that there ecxists a

metrls W, oo order @wan cush’thut i) i orthogonal. Put !
6= > o0 a=wmyg)-uq,. (2)

We m.y suopose that Fep-GFy-e) =0 thot @ iz arbitrary. The equ,

H@=0¢ must be invariant Grder in Sueratisn Qs

0= HE = HWeQ = HW- NG, .

e

Herice HWH = 0, .
H HH:H o
Thus L (H, ) We(HH)= {&HH'EIEJH .
Thic matrix i !3I'_l._:if'1,"..‘£,‘!“‘.~.1'j. {inr (#) 9rd W urs hoth orthogon:l) .
Honea o [ﬁ}ﬂ;(u'ﬂ?-{":‘" f:‘iﬁﬂ'}' ()
Thue  pwgy i orthogshal and i:resia cuo3w  Lenanrphie #ith the
ne Lorazd by ¢ l.e. THHEH I H b M) = Mg

*iWe wuiume hora that @ is reslt. Yhare iz propacly nao dii-
& [T ¢ ” 2 < q "y ¥ Y b = .
Iiculty in hardlips .1:1_-'.;:_15‘1-::( c::::rr-.!.rl.;.wa.'a\,b].it. they are not néessary
unlois molezulefiol Aymndtty & , G i+ o { M>2) are rtudiad,

o
- ] i
4 [ -
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E_&.l:'l w Hita

o, 1

By the thesras gusted above there axists an orthogopal metrix J

sush that Jﬂjﬂyjr,,% iz of the Lorm(6)}; l.e. if the "urtermi-
Lri :.‘-.::.." oi W, wre a:u 555'1'2" d.--bl—---ﬁ, A=tzo-n, ,
bhos _ o ot b {‘ g LB, Aspz... K, 5-:!'.:2."-}.“.._
(7}, the ..erlLa:t £ rl'.c-:_ L o must all ke that of ap
herce  pasng . Noa ﬂHJT'cJ'HHEfH W i) = (30wt o)l )amand 10"
1.2 o THLW" = qagny, -
But h;'ir irrad: aclbh.’u-" nak alTHY =5 BN I
here ‘7; Lo oah dinary nuaber, Since JH ia of rank s, -L‘-‘.ngut—
el M,#}_ ;:,'::’__ﬁ ie 0t ran< My, Thus for every o there sxicts

a sot Ky ol Mg intagers all &a,, 000 Lhat tnz spuare nairix ;A}
b=ta.py 45 r:'Jr::unE,.,-.la.r. Hence JH may be divided mt'.n twn
'ii'n'ujg :

unternuirices, one (of order yer ]
{11} Tar whian £ is in the zet K,
Fis nat in k.

be the corvespondlng untermatrices of

crmpleed’ 2f those untermatriess
and the ather thnse for shich
The former iz evidently nonsingular. Lel M and Hy
H=J"tTn), sntly

H inta ths form fHy M2 . Now
tha constraint on @& i HQmo . H:nce a corrsenonding transpo-
cition of the rows 01 @& bring it to [&} zn that :

M+ Hyy=10 |

romslnguler, € ey be chosen 2. the lndejcndsdviciable,
telng dzpendent on it. Thus the latter can be dragned and the
eonditions (1), (2) and (iii) are satisfied,

§0 CALCULALLON QF SFUR(M) Supposs that tae constraints on the m's

. Ewid

a Lraiz.

cultlon ol earlusns Briviilgay

ars given by AR=0 wisr: BB =T, (12)
THEOREY Sour{éy=Spur(A)'- Spur /@AD" ) (13)

Thie theorem makes the ealeulation o1 Spur{a) very simple (becuuse
the wleuents of A are 0 or 1), amd taefore the trancformution from
®Rt1@ ic carried out. Alsa 1t enables us t3 caloulate the eontri-

butions of the different constrainte cegarstely.

FrOOF  The gconstraints on Rm-R. are SR =o . Hance we may takae
tag mutriz M of (7) t7 bo &M~ sith the notutlon used there we
have i-n.éw HWQ= HWCHE - (14)
Since the ®'s are all independont, th-re e=vists M suzh that @=mgr,
Henca iﬂ Hiw H.M-Hmﬂ“’ﬂ

mienn

0n canpa with (14) it f91lowe thuat HiWe "= por - Thuc
Spur (Ol) = Jpur  HgN,) = Jy-rf (80w tw” u.:ll Spur (UM} = SpurtAd— Jp-rfﬂ.;m

Ldel the anlea bl CH 2L. ‘
e = : . ety -“* -m*"#'

Tl <ty e o

"
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Pt = R

=
EXa JPLE Coruider the anlecule CH;Ci, Taxes
L R Ry Ry =ilncromonts of the distances &F, €A . fﬁ'_{-ﬂr
Rer Ry Ry =Inaremanta ol the angles dcw ﬂr:_l* “C"‘r*

Hy Ry Rg R =inerementa of the ansles ;*S.M "‘5:"?"{. "’f-rc"}!

L

N

Th. dralnid do [Rar Rot o] + [Rpr B+ Fe] =0 o
whara § 15 g nonstant. Thus lﬁ"%[“ﬂﬂn{f{-llr}. 4

The theorem leads o

Operation ¢ | Spur(A) | Sur(0A8] | Spur () 1
e PMotion G s 4 )

on  aboul - : 1
T trgh [t 1 1 o t L

| Reflection abeut | CEC :
the plane | Clcipgl 4 1 g -
CECHy' ]
The Linetig and the Potential Enersgles !
§4 UHJIZE OF AXES Sugppoae that fﬂ }-ﬂ are the -Lneraments of
Iw-6 indevends irternal cocrdinates, For small vikratione,
R=B%¥ wnere "‘-f:} i1 defined in §1. Suprose that ths ocouili-
brium positione of the nvelei wre, in rectanzular c}r‘.rui'nsn,@:_-:.
(BT 2) (5L&), - (BT " Let my, o, ..my e thelr murses. .'.:'Ir"j.t..e
W, o o m; o - . ,\ :
ERE o x crme] PR
P, ™ o om0
'H"""-ﬁ’-"\'----..,;, 1
W AL 0 my -ﬂ.r. a - - s : )
Then the first column. .#JF‘LQ tee fau m_Lrlia[Ethich
iz the wulue of ® when all the nunlei are Aispluced bty 1 unit of
lenth a?uﬁJ the X¥-axle. But tne ®m's are thae ﬁﬂcreneqte ol internal
varisbles, hence :f J-:a - In#hc sAmMa WAY 43 Can shtw that
Bfi *'JF'HQ. ; } -
We have thus far descrived the molecule 1’ cert4 n systen
ot rectangulir coordinates. Bubt when the 1ucu1; moves und rata-
tus in guade as well asg vibrates, there rémaine &n drbitrariness
# Pron thisz it ls immedistely sesn Lhat m;y chnstralnt havihe

the same coefficient for eguivualent soordinuts ﬁ contributes 1 to

Spurl @60 . AT
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J.‘l

-.lr.-
in 1ixing the goordinute axes to the molecule. The follosing me—
" y - 4 L N
tihnd o1 chogsing thege aves 1:, however,the most nreferfabls,
ihe sM-6 internal vari.blies Ry B u-‘l_“,.,“'.:'. deteérsined uniguely from

tha struct -Iirﬂ- of the os:looulz. Je Aofine Xyl 3n by
\n__ i 3 ftfﬁ)uf"r'f‘} p {158)
s0 that R0 | FE=o. (1)

Fron the geftnifion ol g, we eanslude that a a.ydt-&"in 0f uxes of re=
terense ced be found so that the positione of the muclwi are
(2t 1.#-;. &t jul, (T, Trdfs Boga), l‘lrhfmww.ﬂ'“he“ the molecule is not

very ask dizto 1[=| irom fte equilibriue strueture, wWe have thas

& ortzrnal v.u'l.-_.t._jﬂw. cpuzidying the pocislon and srieatstion aof
t.‘Jef-hx_i_:. in macy and av-§ variubles &Re-Tpg sjecifying by

mefns of (15} t.‘qﬁ poeitions of the nuolei with respect to these axes.
§7 THE KINETIC BUERGY In Th:MS QF ®_ Equ.(15) exprestes the

facis ‘l:.r..;-.*;_tlj'.j arigin o1 aur Toving ukes is at any tize the centre

of mass 0t themolecnls, and that the moment of momentus of the
Molecule in .'N?liﬁr syslew ol roference is of the order of mx#
Thus it t.he_r,n.'!af'luie rntates in ﬁsfmgn.wlth an angular velscity o .
ubaut ite g¥ntye o1 mass, lts kinetic sneray ls

Toentyd ot Biss® Trotation® $Zmiegs j) +iern ~ mige .
But T“tatlﬁn’{l E. 2f rosation 1t rﬁ @ J+term ~ mw'cX

Kow T*un’txa u# pass* {K.B. 24 robution itr €=o ) desends on the ex-

tornul wva ﬂuhlju anly (tagethey, of course, with their time deri-
vatlivas}y And B e ges, due 4o thermul szitution,. oA~ .

T . M 5 y .
Thus in gpe! Ti¥=t seprovimation to- equ. of motion ir 4o be deri=

ved frofi (Bf. ‘Tlhl;m -1-ﬁng-fs:;«tgﬁy:--gﬁ‘unﬁj"{""-..w}{gj'?ﬁ;.

t Tui ! i B lf.'. g o= {“\bj' 3
But § '.!}. | [F” ]I'GF) [ Fl:*"‘-tt}r‘J .

wo '.I 4 \ &, .
He: ﬁv, nrving i 11 & =8 ."'*JB ’ {(17)
ué hsve _-.L' 2T = E&'k . {18)
-i__'TI”:. i;l"llfTIG La {ERGY IN TERNE OF EI If we tuke the indepondent

radl ff:r..d -:'.mi"f_l inates #® (§4) to be the R's of the lust s=ecotian, the
xewhlt; =R 1I.b= m.-nme‘ru.:—*:!-
L}

ﬂ,... Ji'\x : _ﬁ!‘ 1‘-;.}*" AT=RF R . (13)
Now ko (00 | 7 gRa- detr (Aztands here for de,cf.§4)

{.. N

i
-

¥
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B

o that @"'5{*'~ﬁ‘}§"ﬂ¢'ﬁ'ﬁ'k[‘*w#}4’ghﬂg A
But {*-..,J_] B ord & cormute®aith each other, hence
LT
g= it (*, ) $a—aga. -

a%a F‘“"#f" 'i.-%-w , =tk febgeng, (20)
o P L 'u:’;_:; irreducibl i M:#m . Ne Have

,_ B Bl

4

Hiroe ‘F@fﬂ"‘&r {21)

It wt ie of order 4y, tniz -how ho't nm. nonvanlshing elementa
oi § are in dy ciagonal blocks ol which dg ura identical

0l dilnention  MaeR, .

59 THE POTENTIAL ENERGY IN TEAS JF R The potential energy de-

puerde An tae internal coordinates only. For emall vibrations, it
is woproximately: equa' tn 4R@R®R , where H iz a nositive sym-

aetricql matr L:ir, gaause whan in eguilibrium the molecule has a
minimain p{:tenti.._ energy. The govering operations leave the po-
tential energy unchanged: iﬁﬂfﬂw}iﬂf:{ﬂh"g
But ® iu arbitrary, Lence ¥ = Ao
Thus we h:::.re,x just as we had l:"l},

W;ﬁ.- ‘EH‘." d=bzo R, = b g fze_]
There arz thorefsre totally fn lnic;er.-d.unt eongtants in the
potential enargy, which are usually unknowne M

1.
@aleulation of the Kinetie Energy

§10 THE THANSHORMATION MATRIXM?T In §4 the f:nr'r.hngjna.l matrix M
Was 1n-t.::o “L.ce-;i to reduce A . Since

(5

“I

h

whi ere Such ﬂﬁ,he] ongs to a set of eaguivalent coordinates, (54,F.3)

lf'
. (g m ) '
where M, 1& orihogonal. Hemce W‘Mks of the form (6},

: vy
11U+ G 3 1"%-{ ‘G_Fr.‘. }'
Supnose that 'ld:?’ is of dimersion dexd¥ . Denote the first d rows
ot e 1 Loy
where 3‘. =n4%. of e'" ivalent coordi nd.x..-:t“@& 2t the f—th setl.
Ko gy g -
Honece W' L= L Aep -

- Thug ) L'L = ALyl - <+ WL A = Ap(LL)-

# rf. &8
r
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g
T
| Menca .01y dag, =2ty g, ;
There axists an operation © which bringas the second coordinate
11 the f!'-ﬂ.'."l g2t to the Iipui, for ahlch 'jz"“,sl‘e, so that Il‘ﬂ.r)“‘:&!_,
Mgph= Gy o Henmoe it = 0, . Thus wil clusonal elemente o1 Lk
P e T S T L . i
yri arual, and éwﬁ-!ﬁﬂ'-ﬁ%fﬁn)ﬂj’%fm.’a%
How & gan Be deterqined 119m the values of :...pra;,}, (cf. ecu. +
i (37)) a7 that this rel .-,un Tfanilitata. 4me leulution of & .
j §11 VECTORIAL IiJT.—t’J.IQ‘- The natrix q--ffﬁ* #Jaﬁ- ieg eulevlated
by first esreuting & . oo B 1s 8 subastcis ol oG, Henes g ]
| & =mb Whel'e M-ﬂ-lmufnjﬂ adumny ¢ (23)
Thus we have t3 find B firat,
f K ow ' =0
; —
Write (xxﬂ;ﬁ}lﬁ-‘ﬁ. (Pyn ,.P,? .F*}J'—;!";
Thzn ‘I,,,--z;{i'; sly o wiellar way we siald write
T

iy =2, T FT . Aeirody, #eraew (21.(21))  (22) !
§l: EXPLICIT EIPAESSICN OF 05 ° 4z uso 2 the vectors ¥ is advine i
tazeous besuied thay arc indcnendant of the coordinate azes.

Two kinde of 'i'a are commonly uwed:
(i) 141' the increment of the btond between the nuclei £°
and #in L-ﬁﬁ.n. miﬂ‘,’ll.‘ when E’-’ﬁ-o + R=o - Hence
m‘;‘h Fy y =0 for allt wedgort”.
. Ilﬂ-ﬁp=§t‘=&--fr‘ﬁ'- wWe hove Redeend , 50 that
By = emd,
{'s:‘q-w"t" vestor from €%to &' .

- -5

’ 1 all other 3 are 0 . (25)
A
(i) B = 4“:= incremaent ofvthe angle pogpg* Evidently all
'y T are 0 excet e 1 EI.- and 'ﬁ. gupnoes that
7 ¥ - x TPy
Whan 'ﬁ-?}.‘, ,g;",_.—,p s we have, sisced £° ulone
'iﬂm dieplacaed, 'R'*- . Henco z’-i’- . Limllur-
" 1y ty coneigering the case when ‘!_;.:e:,.n i m'?,
P i # = - v = -
f b we get a-"..., . Proceeding in this way we arrive
'T“ d. finalily at the first line of (Zo). Novw W vanizhes

when ﬁ-ﬁ-ﬂ . Thus {;1‘3:-4-:5;)—0.

!i
i
|
|
i
| 1
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fi . - ; < ; g “ S A -_\' --: e
foac B : :

so that e ek T i i F
'{‘5:1-_(3;4-3} ; (26) y.
all afher I =o : L
From (#5) and (26) we can write dowg, for all W and ¢ , the vee-
tor Jo irom which & may be calculated thraugh (24).
£13 KINETIC ENERGY IN TEEMS OF THE § 'S’ We shall show however, 4
, that not™all the & 's ere needed for the calculdtion of g . _
i Take (5) : FRE=tdL . (z1) ':
ny {20} i ‘%nftil: a;f:;_ 1@',?,35; . _ {:;I?Lu d.afined in §2) j
| -1 ﬁlﬁﬂn- ?E'
Hence for any fandg’, g ﬁ. P PR ]
[ 3
§0 that ™ = Jpﬁ;xh _ﬁ,}.’%w?ﬁ ] (28) 1
Kow by (217, ha’, L=y Gup=Fop x‘;{#nﬁﬁ. A (29)
where eagh p refer to a set of equivalent tluulel- ()
From (27) kbl &H- T ,"w-’?f .
Heneca g .
.' RN 0 ) =R
t e L (et BN =l 0.
t Thus i G g%y = g I, (30)
! where 1"?‘? & ‘an ordinary number. Substitste—thie—inte—{24) Heme

“F

L 4,..}.*{.‘.;}*.:?)_ sfwﬁ##zsf..{#aﬁ o) (A2) |

From {(2Q) we have, y
pI=ZH 1 ) (34) |

How consider the sum of (28). Since ct goes over all values of

tin ;b when ¢ goes over ail the crcrutmna {:i‘ the group,

if + and t Are in the smue f-t-’t set. T"ms I:,*rJ‘j hedames

;'u,,- (2;"
where ¥ resresenta umr npclauq af r-th sat, Eubat:.tute into
; (31) and make use of (24). WR obtain:

. 't?%é’g . (33)

T T TE——
el e

Thus in calcuiatin&: @' =&, "'_t ]I Ne have ‘only to know [
i * |
! iﬂﬁ‘ for all e(=1,2,--& ), (:1._, g ) and # (=1,2,-4,); tut only |
f tor one #in sach 'ev . From'({24) We bee that not 11 3 are needed.

Secular Equstlon and Degeneracy
£14 NORMAT COORDINATES In:"'ter:nu of the independent reduced coor-
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s
dinates ® defined in §4, the kinetle energy =nd the potential
Energy aragﬁ"@"‘ﬂ and 4RWR » (5§8,9) where & is positive
detinite. Let A, Ay, --- Agms be the roots of the equ.

L}g"- wl=0 , e JAT- ﬂgfﬂﬂ (34)

Then th&re exuta a matrizx L such that

77 SN Rl o g Ey

Put 3'[-{? l,:m, wa got Immediately

2% xinetie ensrgy -ﬁ',fgﬂﬁ- FoXy -E‘ﬂ: 3 : (35)
2x potentlul enercy— Rp® = wAM=IAN. (38)

These c¢coordlnates I are known as the "normal coordinate"'s. They
are nbtained by first solving {3i), thus getting A, ; and then de-
tar’miniﬂ L from m_ Lg¥=AL. ¥ (37)
This L muddt be normaliged by .&.g'L-I : {38)
The nurmﬂ.l doordinates are than caleulatuu lr-um =L .

Now We shall be able to see the rble that symmetry plays in
simplifying the culculations. Eque. (21) and (227 shows the secu-
lar equ.(34) ie factorsd into iﬂ,‘ equationg of #hich & are iden-
tical and are of the a-th dgydy degree. The labor of sdving for
the A's ugnsiderubly zaved. Moreover, the na. of unknown canatants
in 2 is Tefuced. . ;

Tha "ndrmal cnordinates are also a Bp&clal form of the "sym-
metry gogrdinates” introduced by Howurd and -‘lesonf‘ The most ge-
neral form 5f the symmetry coordinates @Y is given by p=-dagwhere

U = G g UY, A e
in whlch 'L'F"J.‘ ﬂrtnaganal and P&’ i‘ar,m. an orthogonal matrix when
'ld.ndﬁ rANge oVer L.y o
815 EO0LUTION OF THE PHYSICAL FEOBLEM —— CLASSICAL THEOHY The La-
grangian is, trom {'jl} and (36},

2 (A A7)
The equa. of motion are therafore
i H+ M=o, i g2 AN-G,
Hence ' C =G (Lt -

The frequericies rJf vibration u.re thus

5

This is corract -':u?l;.r in the fu‘at ap pmxima‘tinn, but it serves to
give almost all ¥ our present Knowledge abosut the forces within
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the molecules. 1
§16 SOLUTION OF THE FHYSICAL FROBLEM — QUANTUM THEORY Now I

T"‘:"?ﬁ;', T"f-;"-'*hﬁ"- ' i

The wuve equation is most easily obtained from the variational

Tormulation of the problem:
v o0 20
&[5 99 2% 5D Vg Ay o 3
where ?'3 .1_9. given by T-g_.;jiij;'. Hence
: ;ﬂ-rﬁ.m nHe=E¥. i
The electric moment in =zny dlrection la, in the first approximation
; : i Wi ! :
} 2.+ Z 0.7
where ¥, ‘iz"immediately caleuluble from (15). Thus the wave fun-
ction and selection rules, hence the Iresquencies in the wibrational

spectra of the molecule, are the same as those of 3Iv-& indepen-

dent harmonic ocelllators with coordinates F,. 6. - Mayg « The fre-
quencies ‘dré therefore exactly those obtalned oclassically. -l
£17 THE DEGREE OF DEGENERACY We huve seen that the secular equ. 1

(34) is factorized into & identical equs. of the a-th degree, db
identical equs. of the m-th degreey --.. ... . Theres mast there-
fore be’ii‘requanciea cach corresponding to d,different normal
moods of ‘vibration {u!,-io&\‘ Wj. The nos. d,di---. ®Te accor- i
dingly called "the degrees of degeneracy". i
B It 1% interesting that they can be determinsd together with
Ry.ony.--- 7 without carrying out the ealeulation of the normal _ 4

2 coordinates. For, by (20) l}
P (46) = ur (). 3

But : g%urfmd_}%{w“—@t: A *r

s !

w#here £ =adrfer of the group. Hence

- My = 4 F Spor (0 Jpon (W), (59) |
Now both Spur{ W) and d,ycan be found® ifrom a tubld of characters E§
ol the point group, end Spur(él,) can be caloulated through the
theorem in §5, 8o that-d, and A, are easily calculable from' (39). ;
EXAMFLE We conslder again the molecule CH,CL. (35) From the :

,r it _l ddri-_-ﬁs’:-gﬁ,-ﬁ.&; left table of characters we get .

4 0 O T o A=3, M=o, My==3 ¢

e S S S fallows that the secular egqu. is
! Z A i -1 " ¢ | factored into 3 cubic ‘equs. 2 of which ,
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5

o

=17
are identical. 3
We coneclude that there are totally 6 vibrational frespancies

3 of which are doubly degenerate.

The no. ol independent constants in they pctential energy is
(§9) Inj=if,

Other Developments .

§18 Izomorg RULE! In the ahovgrexumple the no. of unknown constants
in the potential energy is much greater than the no, of u@ir?ablu
fregquencies, as is usuully the case. The situation 1s, however, not
sof hopeless, beocsuse tha freguencies of the molecule with some of
the atoms replaced by their isotopes serve as additional data. The
new molecule has evidently the same equilibrium esnfiguration and
potential energy as the original one. But in ecaleulating ite ki-
netic energy it must be remembered that allf the results of §§l to
7 are correct, (because they do not concern the nasses of the nuo-
lei) but that since now f“ ]dans not necessarily commute with®,
(21) does not hold. The ﬂecular equ. is therefore not factored as
beiore. The 'vec.'turlu.l method is =till convenient.

If the few kinetic energy matrix is denoted by ¢, from (34}

w'— Ivegl =)@ jgp -

Hence : . T-"_/mlr = f?’/s}’f —l* “‘it,}ﬁny &’
§19 SPLITTING OF HIGH FEEQUEKCIEB? Sometimes it ia knnw that cer-
tain force vonstants are considerably larger than the others, so
that the corresponding frequencles of vibration are much greater

than the rest. To solve for the low frequencies we may make the

N et Ll

approximation of putting the large force constants equal to infinity. '

Let - q" ?P ’ Y= F
X {‘“’“ ‘Fﬂ} (5\5. Mo
We want to find the A's when 2f — s0 . Now e
1A t1) =, i
and when H-—s>em -, F'—5 r’a ° 1 .« Sirce
AT A :
we get e q‘l‘f(ﬂ' {‘f“‘g" )
=ty T
or e hod ° @h'ghg'@ﬂ
o -I-lfqn q,,%‘&}_}&_rj-ﬂ,

12 (990 g0'guy- 4.1 =o.
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THE VARIATION OF THE INTERACTION
ENERGY WITH CHANGE OF LATTICE
CONSTANTS AND CHANGE OF THE
DEGREE OF ORDER

By C. N. Yang
National Tsing Hua University,

Kunming, China

ABSTRACT

The change of the lattice constants due to the order-disordering process in a super-
lattice is investigated by using the condition of minimum free energy in Bethe’s theory.
It is found that the interaction energy depends on the degree of order when the external
pressure is kept constant. The specific heat at constant pressure given by the theory
is compared with experiment. Another source of the variation of interaction energy is
the change of atomic arrangements. This is also investigated from the view point of

Wang’s formulation of the free energy in Bethe’s approximations.
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1. INTRODUCTION

The binary alloy CuAu is face-centred cubic when disordered and tetragonal when
ordered. This change of lattice form can be studied thermodynamically if we know the
energy and the entropy of the crystal. Some calculations along this line has already
been made by Wilson! who used Bethe’s method to find the energy but Bragg-Williams’
method to find the entropy of the crystal. It will be shown in the present paper that
Bethe’s method can be carried through in the calculations, making it self-consistent.
The results are comparable with Gorsky’s measurements?.

The change of lattice constants evidently affects the interaction energy between
the atoms, and must consequently produce a change in the configurational energy and
the specific heat of the crystal. We shall see that the effect is in the right direction to
bring the theory into closer agreement with experiment, because it tends to make the
energy increase more rapidly near the critical temperature. An actual calculation of
the specific heat at variable lattice constant but constant external pressure for S-brass
is given in section 3.

Now the interaction energy can also be influenced by a change of the atomic ar-
rangements. Mott® has shown from a study of the electronic distribution in superlattices
that the interaction energy decreases as the degree of order decreases. The actual rela-
tion between the two is naturally very complicated. A linear dependence (of the average
interaction energy upon the degree of order) has been assumed by Lin? in attempting
to explain the occurrence of the maximum critical temperature of a face-centred alloy
at the concentration ratio 1:3. In order to justify the assumption we shall view the
problem from a new angle by the introduction of the free energy in Bethe’s approxima-
tion®. In this way it is found that the interaction energy as a function of the degree of
order must satisfy certain equations obtained from a set of conditions of consistency.
This same set of conditions of consistency makes also possible the calculation of the

energy of the crystal without appealing to Bragg-Williams’ theory as Lin did.

2. THE VARIATION OF LATTICE CONSTANTS

We shall form the partition function at constant lattice constants /; and [, and
then obtain their equilibrium values from the equations determining the generalized

reactions. Let $2Nm be the number of A-B neighbors in the crystal. If g(m) is the

"Wilson, Proc. Camb. Phil. Soc. 34, 81(1938).

2Gorsky, Zeit. f. Phys. 50, 64(1928).

3Mott, Proc. Phys. Soc. 49, 258(1937).

*Lin, Chinese J. Phys. 3, 182(1939).

5Wang,“Free Energy in the Statistical Theory of Order-Disorder Transformations”, Science Report of National

Tsing Hua University, series A, 30-th anniversary Memorial Number (1941), printed but failed to appear.
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number of arrangements of the atoms for the given value of m, and W (ly,l5,m) the

configurational energy of the crystal, the configurational partition function is
f<m7 Tv lla l2) = g(m) eXp(_W/kT)
The equilibrium value m of m is determined from the condition of a maximum of f:
0 log f(m,T,ly,l5) =0
—log f(m =0.
87?1 g s Ly 01,02

The generalized reactions are given by

d dm 0 0 0
L, =kT—1 m, T = kT — 1 T —1 =kT—1
% k glz ng(mv 7l17l2) k dl2 87’77, ng+ k alZ ng k 812 ng
= —a—liW(ll,lg,m). (1)

To study the change of lattice form in CuAu we divide the face-centred lattice into
four simple cubic sublattices 1, 2, 3, 4*. Let the shortest distance between the sites of
1 and 2, or 3 and 4 be [y, that between the sites of 1 and 3, 1 and 4, 2 and 3 or 2 and 4
be I3, so that the former is the distance between neighbouring Au-Au or Cu-Cu atoms
and the latter that between neighbouring Au-Cu atoms when the crystal is perfectly
ordered. The interaction energies Va4, Vap and Vgp are functions of /1, and Is.

If the number of sites of each sublattice is %N , the number of pairs of sites between
sublattices 1 and 2 must be 4(3)N = 2N. Denote by m, the fraction of A-B pairs

among these. Then the number of

1 N N
A-A pairs is 3 {4 <291 + 262> — 2Nm12] = N[b; + 03 — mq2],

1 N N
B-B pairs is 5 |:4 (2{1 - 01} + 5{1 - 92}) - 2Nm12:| = N[2 — 91 — 92 — mlg],

where 6; is the fraction of sites of sublattice ¢ occupied by A atoms. Thus the energy

of interaction between the atoms on sublattices 1 and 2 is
N[(01 + 6 — mi2)Vaa(lh) + 2miaVap(l) + (2 — 61 — 02 — ma2) Vee(lh)].
Writing
1 1
CZE(01+92+03+04) and V:§(VAA+VBB>—VAB,
we get the energy of the whole crystal

W = N[4CVAA(Z1) + 4(1 — C)VBB(ll) — 2(m12 + m34)V(l1)]—|—
N[8CVAA(12) + 8(1 — C)VBB(ZQ) — 2(m13 + Mg + Moz + m24)v(l2)]- (2)

*Cf. Fig.27 in Rev. Mod. Phys. 10, 1(1938).
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With this value for W, (1) becomes

Ly = =NV, (h) +4(1 = ) Vpp(h) — 2(mas + mad) V' (1), (3)
and

L2 = —N[8€VAA(ZQ) + 8(1 - C)VéB(ZQ) - 2(77113 + ’ﬁL14 + ’ﬁl23 + m24>vl<12)]. (4)

To solve for Iy and [y as functions of T' we must first know the m’s, which are
usually very complicated. Wilson' discussed the values of I; and [, only in the cases
when the alloy is disordered and when the order is nearly perfect. We shall also confine
our attention to these cases.

(i) Disordered. In this case there is no difference between the four sublattices so that

all the m;;’s are equal to m. (3) and (4) reduce to
L1 = —N[4CVAA(11) + 4(]. - C)VéB(ll) - 4mV’(l1)],
L2 = —N[8CVAA(ZQ) + 8(]. - C)VE/;B(ZQ) - 8mvl(lg)]

If Ly = L, = 0, this shows that I; =[5, so that the crystal is cubic.

()

(ii) Order nearly perfect. When ¢ = %, and the order is nearly perfect,

91:02%17 93:H4§07 91"’03:17 91—9328.
There are only a few B atoms on sublattices 1 and 2. Hence approximately
mig=(1—61)+(1—60) =203=1—s.

By the same reason we can obtain the number of A-A pairs of neighbours between the
sublattices 1 and 3:

1
N(91 + 93 - 77_113) =4 <2N63> .
Thus

m13:01*03:8.
We can now write down all the m’s:
Mz =M3s =1 —5, 1M1z = Moz = M4 = Mag = 5.

These equations are correct to the first order of (1 — s). Substituting them into (3) and
(4) we obtain

Ly = =2N[Via(l) + V() —2(1 = s)V'()],
L2 = _4N{VAA(ZQ) + VéB(lg) - QSV/(ZQ)]

These are exactly equations (27) in Wilson’s paper, from which an expression of the

degree of tetragonality in agreement with Gorsky’s measurements? can be obtained.
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3. THE EFFECT OF THE CHANGE OF LATTICE CONSTANTS
ON THE INTERACTION ENERGY

In the alloy CuAu the gold atoms and the copper atoms are in contact when the
order is perfect. Since the copper atom is somewhat smaller than the gold atom, the
size of the crystal must increase when gold atoms exchange their positions with copper
atoms. Thus with increasing disorder the distance between the atoms increases and
hence the interaction energies diminish. The disordering process is therefore effected
with more ease near the critical temperature than it is at lower temperatures; and we
expect the specific heat at constant pressure to possess a steeper and higher maximum
at the critical temperature than the specific heat at constant volume.

Now we shall calculate in length the specific heat at constant pressure of the alloy
B-brass, which forms the simplest type of superlattice that can be studied statistically.
Bethe’s method will be used.

The configurational energy of the crystal is, in Easthope’s® notations:
W = —NABV‘F%NZ[C(VAA — Veg) + Vial. (6)
Substitution of this expression into (1) gives
0=—mV'(l) + c[Via(l) = V(D] + Vip(D),

when the pressure is put equal to zero. Now the variation of V' is not very large, so

that to a sufficient approximation we may assume the linear relations
[Vaa(l) = VD] V() = =Ko + K1V, (7)
and
Vis()/V'(1) = =Jo + LV, (8)
These three last equations give, after eliminating V} 4(I) and V5 z(1):

m+(cK0+J0) (9)
CK1 + J1
We have already seen that V increases as m increases, hence cK7 + J; must be positive.

V=

The other constant cKy+ Jy must also be positive in order that V' may be positive with
only a relatively small variation.

Eisenschitz” has calculated the specific heat at constant pressure by Bragg-Williams’
method. He assumed that the interaction energies depend on a parameter u in the fol-

lowing way:

%(VAA +Vig) = ¢[(1 —a) + a(l —u)?], Vap = ¢bu?,

SEasthope, Proc. Camb. Phil. Soc. 33, 502(1937); 34, 68(1938).
"Eisenschitz, Proc. Roy. Soc. 68, 546(1938).
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where a = .225, b = .203 and u is of the order of unity. Comparing this with (7) and
(8) we see that his assumption is equivalent (approximately) to ours if %KO +Jo=1.22
and 1K, +J; = .508 x 10**erg™'. But with these values the specific heat at the critical
temperature would be too large. In order to make (C,)r, = 5.1R as given by the

measurements of Sykes and Wilkinson® we assume (cf. eq.(12) below)
1
§K0 + Jo = 1.79.

With this value for %Kg + Jgy, the relative variation of V' can be shown to be within
1.3%.

We can now start from (9) and the equations given by Easthope® for the deter-
mination of m as a function of the temperature and V' to obtain the specific heat at

constant pressure:

o =AW _(OW) dmds (OWN dl_ (OW) dmde 0
Poodar  \om ), dz dT o )., dTr \om /), 0z dT"
put d V/kT?
i T
AT~ 14 =z dVdm® (11)
dT' I+ 55

Hence by (6) i
_ 3Nzka(logz)*(—942)

C,= — e (12)
L+ 77z+(cKi+Jo)(7£)

The value of this expression is calculated for the case ¢ = %, the constant %Ko—kJo being
assumed to be 1.79 to make (C},)r, = 5.1R. The result is plotted in the accompanying
figure together with Bethe’s curve’ for Cy and Sykes ad Wilkinson’s experimental®
data.

5R
4R
- a: CV
< b: C
= 3R !
B /
g 2R
g <
. | — '9(\\\
&\
g il

0 100 200 3(50 400 500
Temperature in ‘C

Fig. 1 Configurational specific heat of S-brass.

8Sykes and Wilkinson, Inst. Metals J. 61, 223(1937).
9Nix and Shockley, Rev. Mod. Phys. 10, 1(1938).
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4. THE EFFECT OF THE ATOMIC DISTRIBUTION ON THE
INTERACTION ENERGY

As has already been mentioned, the interaction energy depends in some very com-
plicated manner upon the degree of order. To study the effect of such a dependence

Lin* has assumed a linear relationship:
V:%(1+ac+6mAA) (13)

between the interaction energy: V and the fraction of A-A pairs of neighbours: m44.
In this section we shall study the general nature of the variation of V' in the light of the
theory of the free energy in Bethe’s approximation given by Wang?.

The fundamental equations in Wang’s paper are (45), (46) and (39) with &, and
&p given by (47), (48), (49) and (50). These equations are still assumed to be valid now
V becomes a function of 8, 83 and T. They may be put into the form:

d 0
glogQ = —Nrylogé, = %long(ﬁa,GB,V/T), (14)
d 8
% log@Q = —Nrglogés = log Qo(0a,05,V/T), (15)
E= k:T?ilogQ (16)
dT ’

where Qg is the partition function for the case when V is a constant, if we denote by
%, agﬁ 37 and av differentiations when 0,, 0g, T and V are regarded as independent
of each other, and by de the operator aé + de a?, (14) and (15) mean that we
have assumed with Lin that the equilibrium values of 0, and 03 are given by the same
equations as in Bethe’s approximation. (16) gives the energy of the crystal.

Consistency of (14) and (15) requires

d 0 d 0
a6, (8% 10%@0) = 9 <89 10%@0)

av 9 Oy — av 9
a6, 06,0V 8% = g9, 5vo,

Upon the hypothesis of nearest neighbour interaction the energy in Wang’s paper

i.e.

log Qo. (17)

becomes

0
Eo = kTQﬁ IOgQO = ZNVT)’LAA.

But Qg depends on T and V' through V /T, so that
0? T o 0E,

06,0V 1980 =~V 570g, 198 Q0 = ~ 5 /FTV-
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Substituting this eq. and a similar one into (17) we obtain

0B, AV OE, dV

. el R 1
00, 6, — 96, d0,’ (18)

which becomes, if %0 4V 4V 45 44ded to both sides,

9V db,, dog

dE, AV _ dE, dV
db, d6; ~ df o,

This shows that V and Ej are connected by a relation independent of 6, and 05, i.e.
V =V(EyT). (19)

A consequence of this result is that the coefficient «v in Lin’s relation (13) must be zero.
This makes, however, the maximum critical temperature for the AB type of superlattice
to shift to a value of the concentration different from %, which contradicts experimental
results. One way out of the difficulty is to make some other assumption regarding the

dependence of V on the degree of order, such as

Blz—1) ,
=7 |1 ) : 2
V=" [ +Amaa 2¢(cz — 1)mAA (20)
Let us now try to find E in the general case. From (14) and (16) we get
dE d /0 d(¥) o T2 d(%)0E,
e S (2 Y Y S ¥ e N Y1
do, ar (aea o8 QO) ar 90,00%) ="y ar og,- Y
Similarly
a _ rag)on,
dbs VvV 4T 04s°
Hence
AEOE, _ 0B, dE
df, 005 00, dbs’
Just as (18) leads to (19), this last equation leads to
E = E(E,,T).
Substituting this into (21) we obtain
OF (0B,  OE,OV\ 0B, (| TdV
0Ey \ 00, OV 06, ) 00, vdar)-
But (19) gives
o ov oV, ov oy
v 9,08, AV _ 0T " 0F, OT
df, 0V 0E, ar oV 0E,

0B, OV 0B, OV
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Hence
OB _(y_OVOEY () TdVN _ OVOE, TdV T OV 0k
0E, 0E, oV vdr) 0Ey 0V vVdT VOE, 0T
Now E,/V is a function of 6,, 03 and V /T, so that

0E, TOE, O0E,

W vor Toave

Hence oE E, 0V TOV
i TP 22
0Ey V 0B, VOT (22)
If V depends on m44 only, and not on T', we have
Bi ., By dv Vd(EO/V)
0FE, V dE, dE,

The boundary condition is given by the case when there is no A atoms, i.e. when
0o + 05 = 0. In this case myy =0, Ey = E = 0. Hence

Ey E maaA
E = / d(Eo/V) dEy = zN / Vdmaa. (23)
dEy 0

If the assumption (20) is made, the energy of the crystal is

8 4 /3(2 — 1) 3
E =2zNV, + = - .
zNV, [mAA QmAA Ge(ca 1)m,4,4

When ( is not large, this differs very little in numerical value from Bethe’s original

expression. The specific heat is

d d o d 1
Cy = 2NVAL _ Ny SRAA W7 o Na(log z)? et .
dT d.fl: 1 + le dz d.fl: 1 + kdemAA TZJEAA

The author is very much indebted to Prof. J. S. Wang for suggesting this problem

and for helpful discussions.
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A GENERALIZATION OF THE
QUASI-CHEMICAL METHOD IN THE
STATISTICAL THEORY OF
SUPERLATTICES

By C. N. Yang
National Tsing Hua University,

Kunming, China

ABSTRACT

The quasi-chemical method introduced by Fowler and Guggenheim for the equilib-
rium distribution of pairs of sites in a superlattice is generalized. It is shown that by
considering groups containing large numbers of sites the method may be used to obtain
successive approximations of the free energy of the crystal. To analyze the fundamental
assumption underlying the method more closely, the hypothesis of the non-interference
of local configurations is discussed. The free energy of the crystal is obtained without
integration as a closed algebraic expression with the aid of a Legendre transformation.
Applications of the results are then made to different approximations for simple and
body-centred cubic crystals and for the face-centred cubic crystal CuzAu. In each case

the free energy is obtained and discussed.

"Research Fellow of the China Foundation for the Promotion of Education and Culture.
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1. INTRODUCTION

It was shown by Fowler and Guggenheim! that the quasi-chemical method, orig-
inally devised for the theory of regular solutions, applies equally well to the theory
of superlattices with long-distance order. The method is, as they have emphasized,
definitely one stage further towards an exact theory than Bragg-Williams’ method?.
When compared with Bethe’s® or Kirkwood’s* method it also distinguishes itself in
mathematical simplicity. But to be a method that may lead to a consistent scheme
of successive approximations, it must be applicable to the n-th approximation in the
theory of superlattices. This does not, however, seem possible in the original form of
the method given by Fowler and Guggenheim. It is the purpose of the present paper
to formulate the quasi-chemical method in a new way which is applicable to high order
approximations in the theory of superlattices.

The free energy expression in Bethe’s and in the quasi-chemical methods involves

t15 so far only

an integral. Its evaluation is very complicated and has been carried ou
in Bethe’s approximation for simple and body-centered cubic crystals. In the new
formulation of the quasi-chemical method, however, it will be shown that a Legendre
transformation helps much in avoiding the mathematical difficulties. (It might be no-
ticed that a similar Legendre transformation is used to essentially the same effect in
Fowler’s formulation of general statistical mechanics. Cf. Fowler, Statistical Mechan-
ics, second edition, p.188.) The free energy is obtained directly as a closed algebraic
expression. Its values are given for Bethe’s first and second (modified) approximations
and for the face-centered alloy CuzAu in sections 7 and 8.

To make sure that the quasi-chemical method may actually be used to obtain a
series of successively better approximations, we must investigate the free energy in
high order approximations and compare it with the partition function of the crystal.
This is done in section 5 together with a comparison of the quasi-chemical and Bethe’s
methods.

Except in the last section we are only concerned with binary alloys with atomic
ratio 1:1 forming a (quadratic), simple cubic or body-centered cubic lattice. The
generalization of the method to the investigation of alloys with other atomic ratios

and forming other types of lattices is easy. In fact, the superior power of the quasi-

!Fowler and Guggenheim, Proc. Roy. Soc. A174, 189 (1940).

?Bragg and Williams, Proc. Roy. Soc. A145, 699 (1934); 151, 540 (1935); 152, 231 (1935).

3Bethe, Proc. Roy. Soc. A150, 552 (1935).

“Kirkwood, J. Chem. Phys. 6, 70 (1938).

®Chang, Proc. Camb. Phil. Soc. 35, 265 (1939); Kirkwood, J. Chem. Phys. 8, 623 (1940); Wang, “Free Energy

in the Statistical Theory of Order—Disorder Transformation”, Science Report of National Tsing Hua University,

Series A, 30-th Anniversary Memorial Number (1941), printed but failed to appear.
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chemical method appears to be even more fully revealed when a face-centered lattice
is treated. This problem is taken at the end of the paper where an approximate free

energy expression for CugAu is obtained and its critical phenomena discussed.

2. REFORMULATION OF THE QUASI-CHEMICAL METHOD

Consider a crystal AB. Let 2N be the total number of atoms and z the number
of nearest neighbours of each. At low temperatures we can distinguish between the
so-called a-sites and (-sites for A and B atoms respectively. Denote by N7 the number

of A atoms on a-sites. Let
1—r=w, r—w=Ss.
The partition function of the crystal is

S p(r,T), 1)

where p(r,T) is equal to Y exp(—FE/kT) over all possible configurations of the crystal
with the given value of r. The average energy over all these configurations is

E(r,T) = kT2£ logp(r,T). (2)

But evidently,

N! 2
p(r,00) = g(r) = [(Nr)'(Nw)'] . (3)

Hence r
logp(r,T) = log g(r) + /OO WF(T, T)dT. (4)
The problem therefore reduces to one of finding E(r,T). Since a direct solution is very
difficult we shall try to find an approximate solution by the quasi-chemical method,
which is presented below in a form easily generalizable.
There are in the crystal zN nearest pairs of sites a-3. Among these let there be
[9a, qp] with their a-sites occupied by g, (= 0,1) wrong (B) atoms and their S-sites by

qs (=0,1) wrong (A) atoms. For given r the following relations hold:
[0,1] +[0,0] + [1,1] + [1,0] = 2N,
[1,1] 4+ [1,0] = zNw, (5)
[0, 1] +[1,1] = zNw.
Upon the approximation of neighbour interaction the energy of the crystal may be

written as
E(r,T)=[0,1]Vaa + [0,0]Vap + [1,1]Vap + [1,0]VEp, (6)
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where the V’s are the interaction energies between a pair of nearest neighbours.

We may give (5) and (6) a different interpretation by imagining [0,1], [0,0], [1,1],
[1,0] and Vaa, Vag, Vag, Vep to be respectively the numbers and the molecular inter-
nal energies of the four different kinds of molecules XZ, X, XY Z, XY of a gaseous
assembly. The interpretation of (6) is that the assembly has the same internal (non-
kinetic) energy as the crystal at the given value of r. (5) would mean that there are

altogether zIN X atoms, zNw Y atoms and zNw Z atoms in the assembly.

The quasi-chemical method consists in taking the averages [0, 1], [0,0],[1, 1], [1, 0]
of the assembly at any temperature as approximately representing the corresponding
averages of the crystal at the same temperature. Whether this approximation is good
can only be judged for the present from the results it leads to.

A detailed treatment of the problem of a gaseous assembly has been given by
Fowler®. We are only interested in our assembly of four different kinds of molecules, for

which the results may be summarized as:

[0.1] = EveVaa/kT T0.0] = goVan/AT, ;
[1,1] :EMVG_VAB/]CT’ [1,0] :Eule—VBB/kT7

where &, 1 and v are to be determined from (6). From (7) we get

O[T _ .
[0,1] [1, 0]
where
T = exp —%(VAA—l-VBB—QVAB)/kT . 9)

(8) and (6) together form the starting point of Fowler and Guggenheim’s work®. The
subsequent calculations of E(r, T), p(r, T) and the free energy of the crystal are straight-
forward and will not be repeated here. We shall see later how the free energy can be

written down directly without actual integration.

3. GENERALIZATION TO GROUPS OF FOUR SITES

So far we have fixed our attention on the pairs of nearest neighbours in the crystal
and have used the quasi-chemical method to obtain the average numbers of the four
different kinds of pairs. Now we shall generalize the whole procedure: we shall study
all the groups of sites of an arbitrarily chosen form in the crystal, and classifying these
groups according to the way they are occupied by atoms we shall obtain the average

number of groups in each class by chemical analogy.

SFowler, Statistical Mechanics, second edition, pp. 162-163.
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Fig. 1

To make this clear let us consider in detail groups of four sites forming squares (as
shown) in a quadratic lattice. We classify these groups into 2* = 16 classes denoted by
(0,0,0,0), (0,0,0,1),- - -, (1,1,1,1) respectively, so that all groups in the class (q1, g2, g3, q4)
have ¢; wrong atoms in their upper a-sites, go wrong atoms in their lower a-sites, ¢3
wrong atoms in their upper S-sites and g4 wrong atoms in their lower [3-sites. The total
number of these groups is N. Hence

1
Z 91,42, 93, q4] = N, (10)

q;=0

where [q1, g2, ¢3, q4] is an abbreviation for the number of groups in the class (q1, ¢2, g3, qa)-
Now the number of all those groups in the crystal with a wrong (B) atom on the upper

a-site is just the number of B atoms on the a-sites. Hence

Z%[QM%,%,%] = Nuw, 1=1,2,3,4. (11)
q
Let x(q1, q2,43,q4) be the energy of each group in the class (g1, q2, g3, q4). It is easy to
show that the total energy of the crystal is

E(r,T) = [q1,02, 43, 94 (01, 42, 43, @a)- (12)
q

We may give (10), (11) and (12) an interpretation similar to the one given in section
2 for equations (5) and (6). The same quasi-chemical method used there to obtain (7)

leads now to the following averages (approximate) at a given value of r:

(91, G2, g3, Qa] = Epa ™ o™ g pug M X (010200 00) /KT, (13)

In this expression the parameters &, p1, pa, 3 and py are to be determined from (10)
and (11), which may be written in the form
0¢ 0¢

- N , =N =1.2,3,4 14
o€ Mg w (i=1,2,3,4), (14)
if we put

B(E, pu,s pos s, o) = Z§u1q1M2q2M3q3M4q4e—x(q1,q27q37q4)/kT. (15)
q
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Or again, in the form

o o 0w 0w 0w
Ologé  Ologpy Ologus, Ologus  0log g

=0, (16)

if we put
W =—Nlog& — > Nuwlogp; + ¢. (17)

It can be shown” that £ and yu; are uniquely determined by (16) at given 7 and T'. Their

values at T' = oo are

w .
(f)T:oo = NT47 (,ui)T:oo = ?7 1= 17 27 37 43 (18)

as can be verified by substitution into (14).

To calculate the free energy it is necessary first to evaluate the integral in (4). We
shall show that this can be done without first solving (14) for £ and p;. For, by (12)
and (13) the integrand may be written

0¢

1 — 1 _
WE(T’ T)= T Zq: [a1, 92, G5, 44) X(q1, 92, G35, Qu) = T (19)

0
In the partial differentiation in %, ¢ and p; are treated as independent variables. If,
however, we regard them as functions (defined by (14)) of r and T, (16) and (17) lead

to the following result:
1 — 0o  20(r,T)
—FErT)= == —F—".
T =50 = Tor

Mathematically the change of the independent variables from T', & and u; to T and r

(20)

is equivalent to the Legendre transformation
&, 11, po, 13, g — N, Nw, Nw, Nw, Nw
defined by (14). Substituting (20) into (4) we get
logp(r,T) =logg(r) +¥(r,T) — ¥(r,o0), (21)
so that the free energy may be written down:
F(r,T) = —kTlogp(r,T) = [logg(r) + ¥(r,T) — ¥(r,00)](—kT). (22)
The equilibrium value 7 of r is obtained by minimizing F':
0— OF(F,T) T dlog g(T) N ow(F,T) OW(F,o00)

or dr A (23)

“The proof follows easily (if we put e¥ to be the function &) from Lemma 2.42 of Fowler’s Statistical Mechanics,

second edition.
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But by (16) and (17)

o (r,T)
“or = Z:Nlog i, (24)
and by (3)
dlogg(r) w
———~> =2Nlog —
dr &

so that by (18)

w w
Sten -+ [Sen],_=as(3)
i.e.
o\ 2
== . 2
= (%) (25)

It will be shown in the next section that we may put Vas = Vgpg, Vag = 0, without
altering the specific heat of the crystal if V = %(VA A+ V) — Vap is left unchanged.
When this is done, ¢ will be symmetrical with respect to py, p2, 3 and py, and we
conclude that all the p’s are equal from the facts that (i) equation (14) has only one set
of solution”; and (ii) if the conclusion is true (14) becomes, with all y; put equal to u,

06 _ 09

be =N ng, =aNw, (26)

which does have” a set of solution in ¢ and p. Now ¢ is given by

¢ = E[1 +4dpa® + (4p*a® + 2p°2h) + 4pa® + pl, (27)
where z is defined by (9). On eliminating £ from (26) we obtain
(14 s)u* + (2 4+ 4s)2?p® + 2522 (2 + 2)p® + (4s — 2)2’u+ (s — 1) = 0. (28)

The free energy is given by (21) and (18):

F(r, T 1
— (r,T) =rlogr+wlogw — 2wlog p+ = log(1 + 4ux? + 4px? + 2uax* + 4pPx? 4 u),

2NET 2
(29)

and the condition of equilibrium by (25):
1-7%

= ) 30
Y= (30)

To obtain the critical temperature, we expend (28) in powers of s and find after iden-
tifying coefficients
1+ 622 + 2*

3+ 922 s+ RS

logpp = —
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which is the only real solution for log u. Next we expand (30):

1
1 — _—g— g3 ...,
og 1 S 33

At the critical value z. of z, these last two equations have a multiple solution at s = 0.

Hence
146z +2.2

=1
2+ 2z.2

Y

ie.
zo = (V5 —2)"% = 4858.

4. GENERAL FORM OF THE QUASI-CHEMICAL METHOD

Let us now take a group of any size and form. Let it have a a-sites b 3-sites and
~ pairs of nearest neighbours. The procedures to obtain an approximate expression
for the free energy of the crystal follow exactly the same line as in the special case

considered in the last section. Equations (13), (14) and (18) are essentially unchanged:

(41,42, ] = Epf pg? - e (31)
6= Y it e, L =N, g = N, (32
B 3 Opi
and
(i) =00 = % (33)

But (12) should be corrected by a factor 1 to account for the duplications in calculating

FE from the sum of the energies of all the groups in the crystal:

oA N P _ 27009
E_V;[QIaq%}X(QIaq%)—’_ykT AT (34)
Hence (22) becomes”
F(r,T) = =kT {10%9(7") + %W(r, T) - %W(r, oo)} : (35)

or more explicitly, by (3), (17), and (33):

zNET

2
F(r,T)=— log N + (a—l—b— 7) (rlogr + wlogw) — log¢ —leog/Lil .
z :

(36)

" Care must be taken when the theory is extended to the case when the atomic ratio is not 1:1. The function

¥ in (35) must then be replaced by $W + £’ where ¥’ is the function ¥ for the case when the group of interest

has the same form as the original one but with « and S sites interchanged.



— 64 —

Wi 7 (= S e S

The derivative is

so that the condition of equilibrium is

-5

In actual calculations the following points may prove helpful:

(i) The free energy is changed by a constant if V44 and Vpp are both replaced by
1/2(Vaa + Vgg) — Vag, and Vap by 0. To prove this let z; be the number of sites in
the group neighbouring to the site i. Let x be changed into x’ by the replacement. It

is evident that

Vaa =V,
X —x=-7Vap + % (no. of B-B pairs — no. of A-A pairs),

and that

Z iz — Z ¢;z; = no. of B-B pairs — no. of A-A pairs.

a-sites B-sites
Hence

[qu q2, - - ] = fﬂrillugz e eix/kT = flullqllu;qz L. X /kT7

if we put

! -V, kT / +2;(Vaa—Vi 2kT
g =g aB/ .= e 2i(Vaa—Veg)/ ,

where the + sign or the — sign is to be taken according as the site ¢ is an « or a 3 site.
We can now calculate the new free energy and verify the above statement.

(ii) Sites that are symmetrically situated in the group have equal p’s irrespective of

their nature if Va4 = Vgp, Vap = 0. This has already been shown in the last section.

Since the most troublesome part of the calculations is the elimination of the parameters,
much might be gained by choosing a group with a large number of sites symmetrically
situated.

(iii) The free energy is a function of s, so that (38) is always satisfied at w =7 = 1/2

(i.e. long distance order = 0). The proof is simple when we have already made
Vaa = Vgg, Vag = 0, so that an interchange of A and B atoms does not alter the

energy. Thus
x(q1,q2,--) = x(L—q1, 1 —q2,--+).

Putting
§'=Eups- -



Investigations in the Statistical Theory of Superlattices

and

!
My = —, (39
Hi )

we get

fﬂlql M2Q2 - e_X/kT — é'/,u’llffhuélfqz L. G_X/kT.

Thus if (32) is satisfied

D (=g Ty T e T =N e a2 e TN gy e X RT
q q q

= Nr,

ie. &, uy, ph, .would be the solution of (32) with r substituted for w. Hence by (32)
and (17)
W(1—r,T)=N—Nlog¢ — > Nrlogu; =¥(r,T)

showing that
FQ1—-nrT)=F(rT). (40)

(iv) The parameter for a corner site is always given by

282+ (1 — s2) — sx) (41)

irrespective of the size of the group, if V41 = Vg, Vap = 0. By a corner site we mean

a site that has only one nearest neighbour in the group. Let € be the selective variable
(parameter) of a corner site, and p; that of its only neighbour in the group. If the
corner site is dropped, a new group is obtained. We distinguish all quantities referring
to this new group by a prime, and obtain at once

00" ,0¢/

=Nw, i=1,2---. (42)

The sites of the primed group are numbered in the same way as in the unprimed group.

Introducing the variable y defined in (9) we may write

6= Y e e
p.q

, , (43)
= S e+ @ ul e Ty S (et apde X,

q2;.-- q2;-..
Let these two terms be denoted by ¢ and ¢, respectively. Since

0¢

=N —
¢ ’ 241 a/lzl

= Nw,

we have
¢0 = N?", ¢1 = N’LU (44)
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Now
Jopo €T 00, €

D 11 B L™

Hence e%—f = Nw leads to

L Np4 S Nw = Nw, (45)
1+ex (S
or
w  ele+x)
i 46
r 1+ex’ (46)

the solution of which is (41). Thus the two parameters p and v in the approximation
discussed in section 2 are equal to e.

(v) The “contribution” to the free energy from a corner atom is such that, in the

notations of (iv).

F(r,T) = 7;1];‘/(7", T) + iFo(r, ), (47)

where Fy(r,T) is the free energy when v = 1, i.e. the free energy in the approximation

discussed in section 2. This is proved as follows.

If we put
1 1+ ex
— 1 — 1 ;= {/7 - > 27 48
§=8"T o mE s = 2 (48)
it is evident from (43) that ¢ would become a function of £”, u/, uf, - - satisfying the
relations
0¢ 0¢ 0¢ 0¢
8 e2P) N, _ =Nw, i=12-. 49
g (~ o) =™ wigg (wgs) = Ve 9
It is also evident that ¢ is the same function of £”  uf, pl, -+ as ¢’ is of &, pf,
ph, -+ . Now (42) has only one” set of solution in ¢ and p. Hence from (49) we infer

that & = ¢”, p, = /. Thus

1 1+ex
£_£1+€$7 M1 M1€+.’IJ7

fi = g, 0> 2. (50)

(41) and (50) give the parameters u; in terms of u). Inserting them into (36) we obtain

F(r,T) = —NkT~
v

2
log N + <a+b— 7) (rlogr +wlogw) — log ¢’ —leogug—l—
z ,
rlog(l+ ex) + wlog(e + ) — wlog e]

1 2
= 1" F'(r,T) — NETZ> [(1 - > (rlogr + wlogw)+
v v z

rlog(l + ex) —|—w10g6+x] .

€
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If the original (unprimed) group is a pair of nearest neighbours, we have v = 1, and
(51) reduces to the expression for the free energy in the approximation discussed in

section 2:

e+x

2
Fo(r,T) = —2NkT Kl - ) (rlogr +wlogw) + rlog(1l + ex) + wlog (52)
z

€

Inserting this back into (51) we get (47).

5. COMPARISON WITH BETHE’S METHOD

The so-called local grand partition function!®® in Bethe’s approximations with
long-distance order is identical in form with our function ¢ when all the “interior sites”
in the group have the same parameter u. For the case of equal concentrations for the
two kinds of atoms, which is the case so far considered, this parameter has been put
equal to unity by Bethe. Since the different terms of the local grand partition function
stand for the probabilities of occurrence of the corresponding local groups in the crystal,
it is clear that Bethe’s method with long-distance order is essentially equivalent to our

method plus the assumption that the free energy (35) has a minimum when

(,U)interior sites — 1. (53)

But as we have shown that (38) gives the condition of a minimum of the free energy,
the complete” identification of Bethe’s and the quasi-chemical methods in any approx-
imation reduces to the mathematical proof of the equivalence of (38) and (53). While
this presents no difficulty at all for Bethe’s first approximation (section 7), a general
proof is by no means easy. We can only satisfy ourselves with the assertion that the

two methods are equivalent for large groups, i.e. groups for which
2
a+ b—% < 7.

This follows from the fact that if (53) is true

2y

{(H ui) (;)aﬂ,z] 2

I

1
[H(N)interior sites:| ! = ]-,

so that by (37)

0
EF(T, T) =0.

8Easthope, Proc. Camb. Phil. Soc. 33, 502 (1937).
““complete” as far as the probabilities of occurrence of the local configurations are concerned. The energy

calculations are different in the two methods.
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To see how the equilibrium free energy F'(7,T') varies with T in high order approx-

imations, we substitute (38) into (36) and make use of (32):
F _ 1 q1 ,,q2 —x/kT 1 27 -
—ZNkT—710g<zq:M1M2‘“eX -I-; a—l—b—7 log7.
The last term is very small for large groups, so that by (53)
F 1
_ ] ( —X/kT) )
CNKT o 08 e

6. THE NON-CINTERFERENCE OF LOCAL CONFIGURATIONS

Let us return to the fundamental assumption of the quasi-chemical method, i.e.
to (31) which gives the average numbers of the different local configurations (so far
called groups) in the crystal. This equation expresses the exact distribution law of an
assembly of molecules (cf. the example in section 2) which has an energy v/z times as
large as the crystal. Distinguishing all quantities referring to the assembly of molecules

by a subscript m, we get
( ? ) k 1 g ( ) [ m( ’ ) k 1 g ’”L( )]’
F(r,1 Tlogg ,yl r1 Tlogg

which is obtained from (4). But if H is the number of arrangements in the crystal

lattice having the given values of [g1, ¢a, . . .],

F(r,T)=—kTlogH + E. (54)
Thus _ —
logi = ilog Hm .
g(r) v 7 gm(r)
But”
[ — (55)

where

___9(n)
"= G o

“Fowler, Statistical Mechanics, second edition, sections 2.6 and 5.11.
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Equation (56) has been referred to in Fowler and Guggenheim’s paper! as the math-
ematical expression of the “hypothesis of the non-interference of local configurations”,
because when «/z = 1, the number of arrangements in the crystal consistent with the

distribution law [g1, ¢o, .. .] for the groups of sites is, except for the factor h(r), equal to

N!
H[ql,QQ, .. ]'7

q

H,, =

which is the number of arrangements in the crystal for the given values of [g1, ¢z, . . .] if
the IV groups in the crystal are imagined to be separated and are filled independently
with atoms. The term “non-interference” comes from the fact that actually the N

groups are not separated but are interlocked and cannot be filled independently with

atoms, i.e. they “interfere” with each other.

To find the value of g,,(r) we notice that by definition g,, = > H,,. But Y_ H,, is
the number of arrangements in the N separated groups considered above if they are to
be so filled with atoms that Nw of them have wrong atoms on the sites 7,7 = 1,2, ....
Among the N sites i of the N groups ﬁ(;\rw)r different arrangements are possible.
Hence"

N! N! atb
gm =D Hn =3 Mg [(Nr)!(Nw)!} : (58)

Thus

N 2—(a+b) 2
] (50)

hr) = {(Nr)!(}\fw)!

The free energy of the crystal may be obtained from (54), (56) and (59):

— NET 2

F(r,T)=FE — z S {(a—i—b—Z) (rlogr 4+ wlogw) + log N—
1

NZ[QIaq27'"]log[QIaq27"'] }) (60)

q

which has been obtained above by integration.

"It might be mentioned in passing that for the special case considered in section 2. (58) gives directly the value
of the sum ) in equation (8.5) of Fowler and Guggenheim’s paper if their 7 and ¢ are equal. The generalization
to the case r/q is however easy. The result is

[zN]! [zNT]! [zNT]!

; [zN(r — 2)]![zNz]![zN(1 —r — g + z)]![2N(q — z)]! - [eNT![zN(1 — r)]! [ekNq]![zN(1 — ¢)]! (60)

which is exact. The value of log >~ given by (60) reduces to the approximate expression that Fowler and Guggen-

heim obtained by identifying >  with its maximum term when N is large.
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7. SPECIAL CONSIDERATIONS CONCERNING BETHE’S FIRST
AND SECOND APPROXIMATIONS

(i) First Approximation. If an a-site together with its z nearest neighbours are

taken as our group of interest, all the sites except the central one are corner sites.
Hence their selective variables are all equal to the value of € given in (41). By successive
applications of (47) we see that the free energy is exactly Fy(r,T), a fact which has

1

already been pointed out by Fowler and Guggenheim'. The selective variable of the

central site is given by successive applications of (50)

A:1”<1+6x>z. (61)

r €E+x

The factor w/r is the selective variable for the central site when it alone forms the

group. The equilibrium condition (38) becomes

e = <w>z_1.
T
-

A=1. (62)

But by (61) and (45),

Hence at equilibrium

Thus the approximation is completely equivalent to Bethe’s first approximation, as
already mentioned in section 5.

(ii) Second Approximation. Now consider the group of sites occurring in Bethe’s
3

second approximation®. According to section 4, (iv), the selective variables for the
corner sites in the second shell are all equal to €, which is given by (41). But in Bethe’s
original calculations, the selective variables for the corner sites and the medium sites are
made equal, and are found to be different from e. Thus if we use his original method,
equation (32) can not be satisfied. (In other words, the probabilities of occurrence or
wrong atoms in the corner and the medium sites would be unequal.)

For simplicity we shall drop the corner sites and take as our group of interest the
central site, the first shell sites and the medium sites; with selective variables u, v and
A respectively. (The contribution by the corner sites can be included in the free energy
by simple addition as shown in section 4 (v).) With the notations n, and g, of Bethe?

we find

o= EZ(xn+M$Z_n)Pn(x7V7 )‘)7 (63)
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where

Pz, 0) = 1" Y guml(1 4+ Na] " (22 + \) 37T E (14 ag2)BTNETTE

After eliminating £ and pu, (32) becomes

0 0
P+ wPlV—Pn>

0 0
2 I=n (rP \—P, PA\—P, l=n (P y—
s (A dn s omR) s (et s

) o o

2w = = . (64)
(2 — 2)(2:,;"13”) (Zx Pn> (Zx”Pn) (Zm Pn)
The free energy is obtained from (36):
NETT1, , 0
F(r,T) = o {2( —4z+4)(rlogr +wlogw) + rlogTZLa: P+
- z
wlogZxZ "P, —zwlogr —wz (5 — 1) log )\]. (65)

8. APPLICATION TO THE CRYSTAL CuszAu

For the face-centred crystal CusAu, we may of course follow Peierls? and take as
our group a central site together with its twelve first shell neighbours. The free energy
expression would then contain seven selective variables”, four of which can be elimi-
nated. The resultant expression is very cumbersome and numerical calculations would
be laborious. We therefore make a simpler approximation: the group is taken to be
four nearest neighbours forming a tetrahedron. A little geometrical consideration as-
sures us that all such tetrahedrons contain an a-site (for gold atoms) and three [-sites

(for copper atoms), an interesting conclusion showing that the tetrahedron might be

«

Fig. 2

9Peierls, Proc. Rey. Soc. London A154, 207(1936).

"For a-centred groups, three, and for 8-centred, four, parameters are necessary. Both these two kinds of groups

must be considered because otherwise the energy of the crystal cannot be easily obtained from the energy of the

groups in the crystal.
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regarded as a sort of “molecular” structure in a face-centred lattice with atomic ratio
1:3. Our approximation may thus be reasonably expected to reveal the more important
features of order—disorder transformation in such alloys.

Let p1 and v be the parameters (for wrong atoms) of the S-sites and the a-sites re-
spectively. Let there be altogether 4N atoms. It is easy to see that there are 8N groups
in the crystal. When Nw atoms on the a-sites are wrong, the equations determining

the parameters are

8N = ¢ = &[x® + 327 + 32°p® + 20 + v(2® + 323 + 322 1% + 2° )], (66a)
0
8Nw = Ija—q5 = &w(2® + 32°p + 327 + 23 p), (66b)
v
and

8N (%) 48N (%) +8N (9) - “22 = 322 p€[1 + 2op + 24 + v( + 20+ 2p?)],

3
(66¢)
where z is defined by (9). The energy of the crystal is (cf. (34)),
w1 000 .
E = ikT ar t constant; (67)

so that the free energy becomes (cf. (35))
1
F(w,T)= kT{logg(w) + §(¢ —8Nlogé — 8Nwlogv — 8Nw10gu)§=oc] :
But
log g(w) = N{(l —w)log(l —w) + wlogw + wlog% + (3 —w)log[(3 — w)/3]},

and at T = oo,

w w wy?
V=T h= g =8N -w) (1)
Hence
F(w,T
_%:_910g3+410g8]\7—|—6w10gw—|—3(1—w)log(l_w)+

3(3 —w)log(3 — w) — 4log & — 4w log p — 4w log v. (68)

Since & and v can be very easily solved from (66), numerical calculations are quite

simple. The equilibrium value of w is given by (cf. (37) and (38))

(1- wl(zis — W)

0=-3log + 4log pv. (69)

This is always satisfied at w = %*. Actual calculation shows that the absolute minimum

“This is not evident from (69) directly. But if we divide the whole crystal into four sublattices which are all
simple cubic and introduce a w for each sublattice so that Nw is the number of A atoms on the i-th sublattice
(i =1,2,3,4), it is obvious that the free energy is symmetrical in the w’s. From this we infer that (69) is satisfied

3

at w = 5.
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of the free energy is or is not at w = 2 according as z >.2965 or z <.2965. The value of
the free energy is plotted in Fig.3. From the form of the graph it is seen that the crystal
has a critical temperature at which the long-distance order and (hence) the energy are
discontinuous. The critical temperature T and the latent heat @ are found to be

11 1
Te = .82282 §(VAA + Vip) — VAB] , Q= .8824N |:2(VAA +Veg) — Vas

In terms of the total energy change from 7'= 0 to T = oo:
1
Ey =3N |:2(VAA + Vap) — VAB:| ;

these quantities become

Tc =1.097Ey/R, (Tc =2.19Ey/R in Bragg-Williams’ approximation and
Te =2 1.3Ey/R in Peierls’ approximation.)
Q = 2941F,, (Q = .218E, in Bragg-Williams’ approximation and

Q = .36E, in Peierls’ approximation.)

where R stands for 4Nk.

It will be noticed that due to the lack of a free energy expression Peierls® did not
give the exact values of these quantities.

In conclusion, the author wishes to express his thanks to Prof. J. S. Wang for

valuable criticism and advice.
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THE VARIATION OF THE INTERACTION EMNERGY WITH CHANGE OF LATTICE CONSTANTS
AND CHAMGE OF THE DEGREE OF ORDER

By €. N. Yang
Hational T Hua University,
K China

ABSTRACT
The change of the lattice constants due to the order-discordering prooess

in a superlattice is investigated by using the eondition of minimum free
energy in Bethe's theory. It is found that the interaction energy depends
on the degres of order when the external pressure is kept conatent. The

specific heat at constant pressare given by the theory is compared with
experiment. Another UL or the variation of interaction energy 18 the
change of atomie arrangements. This is also investigated from the view
point of Wang's formulation of the free energy in Bethe's approximations.
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1. INTRODUCTION

The binary alloy Suiu is fage—centred oublo when dlisordered and tetra-
gonal when ordered. This shange of lattice form can be studied thermo-
dynamieally if we know the energy andl the entropy of the erystal. Bome
caleulations along this 1ind has already been made by Wilson™ who used
Bethe's method to find the energy but Bragg-iillidms® method to find
the entropy of the erystal. It will be shown in the present paper that
Bethe's method oan be oarried through in the saloulations,meking it
self-consistent. The results ore eamparable with Gorsky's measurements®.

The change of lattice constants evidently affeots the interaction
energy between the atoms, and must consequently produce a change in the
configurational energy and the speeifie heat of the erystal. We shall
see that the effest is in the right direction to bring the theory into
oloser agreement whth experiment, because it tends to make the energy
inorease more repidly near the eritiocal temperature. An actusl esaloula-
tion of the specifiec heat at variable lattloe comstant but eonstant ex-
ternal pressure for f-brass 1s given in seotlon 3.

Now the interaction energy cen also be influenoced by #jg"ochange of the
atomio arrangements. £ Mott® has shown from a study of the eleotronic
distribution in superlattices that the intersction energy deoresses as
the degree of order deoreases. The actual relation between the two is

naturally wery oomplicated. A linear dependence(of the average interacti

wupmthtdmunfurdulmhmumwm‘ in attempting
to explain the oocurrence of the maximum eritiesal temperature of a fage-
oentred alloy at the concentration ratio 1:35. In order to justify the
assumption we shall view the problem from a new angle by the introduc-
Lit1son, Proo. Wgy/ ##¢/ Cemb. Phil, Soc. B4, 81(1938).

2Goraky, Zeit. f. Phys. 50, 64(1928),

SMott, Proo. Phys. Soe. 47, £58(1937).

4Lin, Chinese J. Phys. 3, 1682(1939).
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e
tion of the free energy in Bethe's apprnﬂmtiuns. In this way 1t is
found that the interaction emergy as a funotion of the degree of order
must setisfy oertain equations obtainedfrom & set of conditions of eon- -
sistenscy. This same set of conditions of oconsistenoy makes also posaible
the saleulation of the emergy of the orystal without appealing to Bragg-
Williams* theory as Lin did. o
2. THE VARIATION OF LATTICE CONSTANTS

We shall form the partition funotion at constant lattice constants 1,
and 1,, asd then obtain their equilibrium values ¥§ from the equations
determining the generalized reactions. Let #zlm be the mmber of A-B
nelghbours in the crystal. If g(m) is the number of arrangements of the
atoms for the given value of m,and W(1 ,1,,m) the configurational energy
of the ergstal, the eonfigurational partition funotion is ;

f(m,T,L,L)=g(m) exp(-W/kT).
The equilibrium valus & of m is determined from the condition of a maxi-
mum of f: == log £(m,T,1,1)=0,
The generalized reactions are given by
L; =kT 4-log £(&,T,1,1)=kTJ] :x log £+ kT5rlog MKT;log £
== IW(1,LE) . ' w

To atudy the change of lattice form in CuAu we divide the face-cebtred
lattice into four simple cubie X sublattices 1,2,3,4%. Let the shortest
distance hnmeﬁil:im of 1 and 2, or 5 and 4 be 1,, fHgdd that between
the sites of 1 and 5, 1 and 4, 2 and 5 or 2 and 4 bel 1,, so that the
| former is the distance between neighbouring Au-in or Cu-Cu atoms and the
latter that between neighbouring Au-Cu atoms when the erystal is perfectly
ordered. The intersction energies V,,V,and Veare functions of 1, and 1,.

e

| ﬁﬂf. Fig. 27 in Rev. Mod. Phys. %g_, 1(1938).

| “Wang, "¥ree Enerzy in the Statistical Theory of Order-Disorder Transfor-
mations", Seience Report of NHational Tsing Hua University, seriea A,

|  ®0-th enmiversary Memorial Number (1941), printed but failed to appear.
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=3=
If the numder of sites of eash sublattice is N, mmwpﬂrl of ’
sites betwen sublattices 1 and 2 mist be 4(3)I=2N . Denote by m,, the
fraction of A-B palrs emdng these. Then the mumber of /
A=\ pairs is F[alFerFe)tlln, [N [6rqom,] |
B3 pairs is 1[4(5 1m0} +5{1m 0, ) llin Joi /266, ] |

where ¢ is the fraction of sites of sublattice ¢ oooupied by A afoms.
Thus the erergy of interaotion §f between the atoms on sublattices 1 and

i N[ (80, Vs (1) 2, Vo (1) (2-0mfom, V(1)
Writing =4 646+ 6,44)  amd Vei(VtVy)=The
we get the enersy of the whole orystal

7Ty by e e e L (2)
With this velue for W,(l) becomes

il (40, | 1) +4( 10 )W, (1) =2 (i, +25,)¥ ' (1) ] ’ (3)
and Lo/ 80Y, (1) + 8{1=0) ¥, (L) =2(H o+ B Byrm, IV (W] o (4)

o solve for 1 end 1,as functions of T we muat first know the @'s,
which are usually very complicated. H:Ll.ml discussed the values of 1, and
limlrmthtmummthcmnril disordered and when the order ia
nearly perfeet. We shall also gonfine our attention to these cases,

(1) Disorderei. In this case there is no difference between the four sub-
lattices 80 that all the Ti!s are equal to M . (3) and (4) reduce to
L, =3 [40%, (1) +4(1~0)%, (1) ~iv(1)] ,
L, ==l 80Y, (1)+ 8(1=e ), (L) -amv(1)] .
If L,=L,=0, this shows that 1,=1,, @0 that the erystal is cubic.
(11) Opder nearly perfeot. When o=}, and the order is nearly perfeoct,
§=63 1, &m=4u0, Bpfym], 6 =im=g,
There are only a few B atoms on sublatticesl and 2, Henoe approximately
_ = (1=6 )+ (1-g)=2¢,=1-g.
By the S4me reason we oan obtain the mmber of A-A pairs of neighbours

(5)
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between the sublattices 1 amd 5:

(846, =i ) =4 (51 65 )
Thus Rl L

We oan now write dowvn all the H'a:
Semel-s ,  EOEAESESS.

These squations are eorrect to the first order »f (3ps). Substituting them
| into (3) end (4) we obtein
J L, ==2N/, 1)+ (1) -2(1-8)V(D]
| and Ly ==l Tk 1)+ V(1) 287{ 1) ] . = ;
These are exactly equations (27) in Wilson's paper, from which an expressioh
of the degres of tetragonality in agreement with torsicy's maaau:'mautaa can
be obtained.
5. THE EFFECT OF THE CHANGE OF LATTICE COMSTANTS (W THE INTERACTION ENERGY

In the alloy Cuiu the gold atoms and the eopper atoms are in contact when

the order is perfeot. Since the copper atom is somewhat smaller than the
gold atomg, the size of the crystal must inorease when gold atoms exchange
their positions with oopper atoms. Thus with inereasing disorder the dis-
tance between the atoms incresses and hence the interaction enorgies dimis

niah. The discrdering prog¢eas ls therefore offetted with more sase near

4 | the oritical temperature than it is ¥ at lower temperaturesj and we expect
the speeifie heat at constant pressure to possess a gteeper and higher
maximum at the eriticsal temperature than the specific heat at conastant
volume.
. Now we shall salenlate in length the specifio heat at constont pressure
| of the alloy f-brass, which forms the simplest type of superlattice that

“/ |ean be studied statistically. Bethe's A method will be used.
| The eonfigurational enepszy of the eryastal is, in Easthope' a notations:
| W =l s e ] oy ~Vou) g | (e
Blaathﬁpﬂ Proc. Camb. Phil, Soc. £2/ 33, matmﬁ?}, 54, 68(1933).
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| =5
Substitution of this expression into (1) gives
0=V 1)+ 0 aal 1) =s{ 1)1 [%4(2)]
when the pressure is put equal to zero. Now the variation of V is not very
large, so that to a sufficient approximation we may assume the linear

relations (V1) =Voe( 1)) V{1 )=s BV, (7)
and el V(L= IV g (a)
These three last equations give, after eliminating V(1) emd Vyl1):

v Egeeml (9)

We have already seen that V increases ns T inereases, hence ck,+J, must
be positive. The other constant oK.+J must also be positive in crder that
v may be positive with only a relatively small wariation.

nsmumwf has ealeulated the apecific heat at constant prie::urﬂ by
Bragg-Willisms' method. He assumed that the interaction energf dependd
on a pumatar:in the following way:

£ (Gt V)=9(1-a)sallea)] , Frew®

where &=,225 fyd b=,203 and u is of the order of unity. Comparing this
with (7) end (8) we see that his assumption is equivalen$ (approximately)
to ours if K+J=1.22 and 4K+ J=,508x10" erg” . But with these
valuea the apecifie heat at the oritiesl temperature would be too large.
In order to make [§/)gd///I8/)4{ (C;)qy=5.1R as given by the ueasurements

® | of sykes and Wilkinson® we assume (of. eq.(12) below)

e ! $K.4 I=1.79.

" With this value for {K+7, the relative variation of V ean he shown to be
within 135,

To

&
We oan now start from (9) and th:haquatium given by Easthope for the
e

80|
) determination of 1 as a funetion of, temperature and V to obtain the speecific

|
| heat at constant pressure:

__J fBisengchitz, Proe. Roy. Soe. 88, 546(1958). _

p3? Bykes and Wilkinson, G 7. g1, 225(1937),
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p=a7 =l %’f@a‘%‘fﬁ%f—ﬂ L3-S (20)
- But %-{ﬂ;’ﬂ’}ﬂhk};f‘}';—'} . (1)
Henoe by (6) +1zieed 1og (=% dx}
G, =5 wic . {(12)
PRt ﬂ+%ﬂ'ﬂ}f 5;}

The -rﬂ.un of this expreasion is caloulated for the case o=; , the oconstant
1K +J, being assumed to be 1.79 to make lu,l,u-s.u « The rﬂﬂult is plotted
in the accompanying ﬂmnm#mu with Brbh,oinmmrn.rﬂ...- Ard
and Sykes and Will:l.nm‘l mimm data.

Heat
%

L 3

-+ 7

-

b "
As has already been r.n (9 M@ 200 365 &8 ..egy depends in some

Tempervture in “C
vary complicated m:nn..... GOl Wb wegied 3. Szocr. Lo study the effect 01.‘
sueh a dapmﬂ:um- .u:l.n has assumed £ a linear relationship:

Vol (Lroordm,) = : . as)
between the interastion enerzy:V and the frastion of A-A paira ur neigh-
bours my, . In this section we shall study the general nature of the varia-
tion of V in the light of the theory of the free energy in Bethe's appro-
ximation given by Wang®,

The fundamental equations in Wang's paper are (45), {4.5] and (39) with
$, and 3 glven by (47), (48), (49) and (50). These eguations qre still
agsumed 10 be valid now V becomes e .function of q,.,%m!. They may be

: 4. THE EFFECT OF T = 1o n.,_:lﬁ S TITERACTION ENERGY

.put into the form:

st Fglogim-ltr, logg, = fﬁlﬂs Q.10,4V/™ (14)
“ix and Shocklgy, Rev, Mod. Phys. 10, 1(1978).
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g%mg CmTiz, m&-%m Q. (8,8,7/1) , (15)
"k'l‘%vlbﬂﬁ . (18)

whers Q. 18 the partition funotion for the case when V is a constant, if
we denote br;%;, _’?k' # and 3 differentiations whan 6, ¢, T and V are
regarded as independent of each othar, and W&% the operator :a%,*%_:%’ .
(14) and (15) mean that we have assumed with Idn that the eguilibrimm
values of ¢ and & are glven by the same equations as in Bethe's approxime.
tion. (16) gives the energy of the crystal.

Consistency of (14) and (15) requires

k% Logt )= 75,5 1oge)

T J L3
11‘. :f;;:r ﬁ-}?-m- R;ﬁm . ll?}
Upon the hypothesis of nearest neighbour interaction the energy in Wang's
paper beocomes E,=kT%%: logQ =ziVam., .

But 4, depends on T and V through V/T, so that
* T_a Vi,
Wﬁlﬂﬂn"-?ﬁm -;%fm .
Subatituting this ﬂ'am.a similor one into (17) we obtain
oy e dV

5 3G % (18)
wiich becomes, if 2 ﬁ% is sdded to both sides,
de dv _ dE 47 It
This shows that ¥ and B, are connected by a relation independent of & emd
Gy Loos V=v(E,,7) . (19)

A oonsejuence of this result is that the coefficient o in Lin's relation
{13) must be zero. This mka;. howevar, the maximum eritical temperature
for the AB type of superlattice to shift to a value of the congentration
different from 4, whieh contradicts experimental results. One way out of
the diffievty ia to make some other assumption regarding the dependemoe
of V on the degree of order, such as

V=T[14 e~ (::_lj} i mM‘] " (20)
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Let us now try to find E in the general case. From (14) and (16) we get
d ey L j 4| Jy

ﬁ-ﬂ’ﬁlﬁlﬂsﬁgl hﬂﬁfa@g’-‘* g iR (21)
Similarly gfu wal }%J .
? dF aﬁ aEn- HE
Heneca 7% ‘:-,‘f,rd T dﬂ;é
Just as (18] leads to (19), this last eyuntion leads to
BE=E(E, ,T) .

Substituting this into (21} we obtain

%’I ﬂ'fg_'_ﬂE_'}}‘;' _; tl!"_%] -

But (19) gives = £ v ¥k 5%
?E and ;- .Eg .
AE T T v

K

Hence %’E {1-%G;vlll--1[§r} =l S~V A~V % .
Row 1, /V is a funstion of &, # and V/2, so that
- o 22 4 L2
¥a° .
Henee ; 3:%.,"1‘1_ "‘?i; . (22)

If V depends on mgonly, and not en T, we have
o Eo V. o d(&fy)
E_.'l Ay 3‘%; L =
The boundery sondition is given hy the ense when there i1z no A stoms, i,.s,
when @*ﬂglﬂ In this ease m.=0, E,=RF=0. lenoce
5[ (VG am e % @ dom(n ARl [Vamy . (23)
If the assmption (20) is mede, the amrr,.r of the eryatal is
" 1 (1-1} 3
W By Getea- 17 ]
When P is not lrrge, this differs very little from Dethe's originel ex-
preasion in nmawiml 'mluu, The speoifio hest is

O P -mntmf“”"‘-"“f}_w—ggru .
i
The author is vm moh indebted to Frof. J. 5. Wang for suzsesting this

problem =pd for helpful disonssiona.
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A OEMERHALTSATION OF THE (UASI-CHEMICAL METIOD IN THE
STATISTICAL THEORY OF SUPERLATITICES
By C. Ha Yang*

Mationel Tsing Hus University,
s China

ABSTRACT

The q.mi-';hmiou.l method introduced by Fowler and Gugrenheim for the
equilibrium distritution of pairs of sites in-a superlatiice is gene-
ralized. It is shown that by comsidering groups contelning large nun=
bers of sites the rethod may be used to obtain successive approximatioms
.bf the free energy o:l!‘ the crystal. To analfze the fundemental assump-
;_t-.inn of underlying she method more closely, the hypothesis of the non-
'-i'l.'nt.orrarma of loe:l configurations is discussed. The free energy &
_of the erystal is obtained without integration es a closed algebraic

expressiod with the aid of a Legendre transformation. Applications of
“the results are then made to differemt approximations for sinple and
"~ pody-centred cuble wlt»al.l and for the $ikpdé Toce-centrad cuble
| : erystal Cughu. In each case the free emergy is obtained and discuased,

e

*Hegearch Fellow of the China Foundetion for the Fromotion of d.ﬂnuatian
and Culture,
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It was shown by Fowler and Guggenheinm! that the quasi-ghemical method,
orlginally devised for the theory of regular solutions, applies equally
well to the theory of supperlatiices with lomg-distence order. The me-
thod is, es they have emphasized, definitely one stage further towards
an exact theory then Bregg-Villiems method®. Vhen comparod with Bethe'sS
or Kirkwood 's® mota0d 1t alsd Aistingulshod T mitherfiticel sirplicity.
Bat t0o be a method that ey lead to a consistent ashame of suoceusive
approximetions, it rwast be applicable to the n-th epproximation in the
theory of MMEF superlottices. This does not, however, seem poscible in
thie originel form of the mechod given by Fowler and Guggenheim. Tt is
the purpose of the present paper wo lformulste the quesi-chemicrl methal
in o new woy which is appliesbls to high order approximmtions in the
theory of superlatiloca.

dhe ifree wnergy expression in Betle's aud in the uasi-cherdeonl methods
inyolves an integral. Ite evaluntion is wexry complicated and hrs besn
carried ous™” so for oaly in Dethe's spproximtion for sirple and
bocy-oentred cuble erystals. In the new formuletior of the russi-chemi-
cal method, however, it will be ghovm that & Logondrs tronstormation
helps muph in avolding the mathematical aiffieulties, { It might be
motieeu what a siniloy Legendro mufnmﬁim is used to essentinlly tha
seme offect in Fowler's formmlation of generel statistiosl mechanmics. Ofs
Fovlor, Stetistionl Mechaniocs; second editlon,p.199.) The free energy .
T¥oriar ana ouggonhotn, Proo. Roy. Soo. A17¢. 199(1940).

gity. werles., SO0-th amniversary Memoricl Humber (1941), printeu, bul
S0 AppeLT.

“Bregi and Lilliams, Froc. Roy. soe. Fgg i.'aﬁii M_. -40[195--},
SBeths, iToe. Hoy. 552(
itumom J. Chen *.r::—umaj.
SChang, .roa. Gﬂ.ﬁh « 25, 265(1999); Xidmeod, J. Chem. lys.
ﬁ E—-I-"llg‘;.u.}| +“\J har,!:f in tho 3 ncistiond ""’Lc-"‘" of 0rdor-
1 isorder .?mmfmu.ﬂun“ s weinnce Report of lational Tsing Hua Unimer- ¥/

g

a
|
}
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is obtalned directly as a closed algebraic expressiom. Its values are
given for Dethe's firat and second (modified) approximations and for
the Tfaceg-gentred alloy Cugin in sections 7 and 8,

To make sure that the quasi-chertical method may actually be used to
oebtain a series of successively better approximetions, we must investi-
gate the free energy im high order approximetions amd compare it with
the portition functhon of the erystal. This is done in section 5 toge-
ther with a comparison ¢f the (uasi-chemical and Bethe's methods.

Lzoept in the last section we are only concerned with binary alloys
with atomie ratio 1:1 forming a (quadratic), simple cubic or body-cen~
tred cubiec lattice. The generalizstion of the method to the investign-
tlon orf allnrn with other atomic ratios and forming nthar.tppuu of
lattices is easy. In fact, the superior power of the quasi- chemical
method nppaaraﬁ:dhﬁ'm more fully revealed when a face-centred aible lat-
tice is treated. This problem is taken at the end of the paperichere
an approximate free cnergy expression for Cuziu 1s obtained and its
eritical phenomena discussed. '

2, REFORMULATION OF THE (UASI-CHEMICAL METHOD

Conslder a orystel AB. Let 2N be the total number of atoms and ;
the nuiber of mearest neighbours of each . At low temperaturea we can
distinguish between the sow-gcalled t-sites and 4ke ﬁ-aitea for A and B
atoms respeotively. Denote by M- the mumiber of A atoms on o sites.
Let I-r=w *» r-w=2%.

The partition fumetion of tha erystal la

FprT) D
where $(nT) is equal to Zexp[-%.) over all possible configurations
of the crystal with the given walue of F. The average energy over all
theae configurations is
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ElriT) = #T5 g p(riT) (2)
But evidently, plr o) =90 rJ-[mf (3)
Henoe g p(nT)= uﬁm[ﬁ;‘ E(r 74T, (4)

The problen therefore reduces to one of finding E(rT) -+ Since & direct
solution is very difficult we shall try to find an approximate solutlof
by the quasi-chemieal method, wihich is presented l:.:lr.m in a form easily
generalizable.

There are in the erystal 3IN nearest pairs of sites J«-g. Among theso
let there bo {z.-,?‘] with thelr d-sites cooupled by :?,.[-{},l} wrong (B)
atoms end their g-sites by 5&-0,11 wrong (A) stoms. For given r the
following relations hold:

Toal+ [ese] + 14T+ D-0]=3N

_ [1:4] +[1.0] = ghNw, (5)
and y Io1] +11.4] =3Nw.
Upon the spproximation of #e neighbour interaction the energy af the
erystal may be written as

E(rT) = [01]Ya+I0s0] Vap+ [1:17 Vag+ [1:€] Visg » (6)
where the V's are the interaction emerg¥es between a palr of nearest
neighbours.

We may give (5) and(6) o different interpretation by lumagining [0,1],
0,0, [3,1], [2,0] and Vi Vs \ip Ves B0 be respectively the numbers
and the molecular internsl energies of the four different kinds of
molecules Ko, X, X¥i, XY of aB eseeubdy gascous assembly. The Interpreo-
tation of (6) is that t.ua mmhlr has the same internal (non=kinetiec)
enorgy as the orystal at the g:l.-runmlna of r. (65) would mean that
there are altogether jN X atoms, }hr atoms and 3V~ Z atams 1in the
asganbly.

The goasi- chemleal method comsists in taking the averases m »
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[0.0], 1,11, [1,0] of the sssembly at any temperature as approximrtely

representing the corresponding averages of the orystal at the same tre
perature. dfptm this approximation is good can only be judged for the
present from the results it leads to. '

A detall ed treatment of the problem of e gaseous assembly has been
given by Fowler® ., We are only interested in our cssembly of four dif-
ferent kinds of molecules, for which the results may be swmerized as:

s ;Pe—\m&r : 11_3:?]=5¢-‘m/#‘r, ()
[ni] = gpw e 984T [1.c]= Su & T
where §, u and p-are to be determized from (6). From (7) we get
[0 /(o ] = x72, (8)
A _ R T e:f‘lp[ 3ilan+vee—2bu ) JHT] (9)

18) and (€) together form the starting point of Fowler and Guggenhein's
workl. The subsequent caloulations of E(nT) , $(nT) and the free
energy of the erystal are straishtforward and will not be repeated here.
#a shall see later how the free energy can be writtem down directly
without actual integration. )
S. GENERALTIZATION T0 GROUPS OF FOUR SITES
do ra.r we have fixed our attention on the pairs of nearecst nelghbours
in the erystal and have used the guasi-chemiecal method to obtain the
average numbers of the four different kinds of pairs. Now we' shall pene-
relize the whole procedure: we shall study all the groups of sites im
erys of an arbitrarily ehosen form i, oand elassifying these groups
according to the way they are ocoupled by atoms we shall obtain the
average number of groups in easch elpss by chemieal analogy .

To nmake this eclear let us comsider in detall groups 4= ;ﬁ
of four sites forming squares (as shown) in e quadre- ﬁg.d;"::l
tlie lattice. iie classify these groups into E‘ilﬁ clasnesa Fg. 1

il L T p—

SFowler, Statistical lechenics, second editicn, pp.162-16S.
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.
denoted by (0,0,0,0), (0,0,0,1), ?-- (1,1,1,1) reapectively, so that
all groups in the elass t?"x"ﬂ”ﬁ] have g.fm:ng atons in their upper
o=sites, ¢ wrong atoms in thelr lower osites, f:vwrong atoms in -
thelr upper [i-sltes and fywrong atoms in their lower fi-sltes. The
total number of e these groups 14 N . Lenoe

sfé [fogepegud =N, is . G0)
where/f. 0., 3nfJis an cbbrevietion for "the nuuber of groups in the class
{g,g,,ﬁ,?‘}' = Now the number of all those groups inm the erystml with a
wrong (B) atom on the upper o-sitef is just the number of B atoms on
the oi~sites. llence :
gfif?ufvfrf-}mm-r, 1=1,2,5,4, (1)
Let  Y!%.2pf) be the energy of each group in the class (Fafodnp) -
It is emsy to show that the total energy of the eryatal is
ED=F I3 po e et . . A
He may give (10), (11) anda (12) ep@dfferent Interpretation sinilar
to the one given in seetion 2 for equations (5) emd (6), The mue
quasi-chemical method used there to obtain (7) leads now to the fol-
lowing averages (approxinate) at a given value of r H
[pfopii=s F"}‘th' e VP fu)/}r- (13)
In this expression the parsmeters o po e pyond M are to be deter-
mined from (10) and (11), whieh may be written in the form
3‘,’; =N, ,u.-ﬁnnw ta=h2.3.4), (14)
Ak P popo porpn) = Z St B oy po wr, (19)
Or again, in the form L _
R
if we put ¥ =Ny S Zvibegpi + 9 (17)
It can be mmm_? that € and M are undquely determined by (16) at

. "The proer Eﬂmn;nu if we put ¥ to be the function #)inm from

Lonwe 5,42 of  Fowlers Slatistical ‘Mechamics , secend edition .
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gilvenr and T. Their values at T=#& are
(Op=M* (Mp, =¥, <=1,2.5,4, (l3)
as oan be verified by substitution inmto (14).

To ealeulate the free encrgy it 1s wesw necessary first to evnluate
the integral in (4). We shall show that this can be done without
rirst solving (14) for £end »; . For, by (12) and (13) the integrend
may be written

FPEOD =g (03B Py o= 22 - (29)
Ia the partial differentiation in J£, faud p; are treated as indepen-
dent variablea. I , however, we regard them as Tfunctions {'ﬂerinod by
(14))of r amd T, (16) end (17) leadd to the following resalt:

X e =3 = 2L . (20)
Mathematicelly thie chunge of the independient varisblas fron 7. % and M
to Tend r is equivalent to the Legendre transformation

3 Mispr py oy =—> N, N, Vur Mo A
defined by (l4). Substituting (20) into (4) we get

Iog pUEST) = by G(r)+ielmT)=Wirie) ; (21)
80 that the free energy may be written downs
FlrT) = -*.ET&"&{!‘,T) -ﬁa?;frn VAT = Bir se2] (A7) (22)

The equilibrium wvelue Fof r is obrvained by minimizing ¥ :
aFfr1) o faty (F,T? =
mn_i&';_'&l,_ﬂ[.%f_ » LD JUES] (a5

But by (16) amd (17)

ST . ] .

S =ENmps (24)
and by (3) cAimg () _ mg?,;‘!_:,
8o that by (1) b |

L LT, Lo
Fuppsm by E ol = 2iegt5)
R T o

i.e. F";a‘ —[-?j . {£5)
1 It will be suown in the next section that we may put Va="ee Yaa=o
without altering the specifie heat of the crystal if W'Eéﬁﬁ*w#t

Tesbemmskeanaad . will




~92 —

W 1 1 = S 18 S

I
left unchanged. When this is done ,¢ will be symmetrical with reapect
to 6= o, j.u.ﬁu.nd Pa s and wo conclude that all the p's are equal
from the facts that (i)efouation (14) has only one set of ﬂﬂll.l.ﬂﬂll?,
and (ii) if the conelusion is true (14} becomes, with all py put equal
o p,
$=N . pii=avw, (26)
wiich does have? & set of solution in § und p . low #1a given by
P=E[1eapx’y (X4 200 + 40X 4 4] (27)
where = is defined by (9). On eliminating § from (28) we obtain
G+3d ps fz+4s}x?x’ + 25X0(x52)0u*+(45-2) Xprt (3-1) =0, (29)
The free emergy is given by (21) and (18):

- SH = rhegr s wlagh -awegpis i Goy (14 s gt g4 agospd| 0
and the condition of equilibrium by (25):

_fi1-F .
F +F (30)
To obtain the eritical temperature, we expend (28) in powers of 8 and

Ifind after identifying coefficlents
1, el
ﬂqft:-—if.ﬂ.ﬂ = +h-53+.-.- »

FEETL
which is the only resl solution for i‘?ft. leort we expana (S0):
t?’u--x-i-sl...
4t the eriticel value X. of x , these last two equatioms have a multi-

ple solution at s=0. Henee
LTS S gy
2r2xz T
i.e. Y¢-f,§'-2}5"'-=.4ff?
4. GEIERAYL PUHM OF THE (UASI-CHEMICAL METHOD
Let us now take a group of any size endform. Lot it have & J-sites
kb f-—nit.aa and ~ pairs of neareat hnigh‘buuru.r:Tha procedures to obe=
tein 'n approximace expression for the free emergy of the crystal fol=

low exactly the same line as in the speoial omse considered in the

.,

El
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last section. Squatioms (15),(14) end (18) ere essentially unchansed:
28] = gplp.. VT, (1)
{’t-l; 3““‘5}"&.. e r'f‘-r " g%;—ﬂ_. ﬁ‘sa =N ; ‘Ba]l
and M= (33)

mtu}mumw;m%ummmmn-
. eatlons in ecaleulating E from the sum of the emergies of all
groups in the erystal: :

E=d g ag] (1) = I 2L (34)
Hence (22) becames*® ;
Finr)=-k7[ &? #r) + ;}wr:'r)- ;}wnwj N (35)

ofmore explieitly, by (5) , (17), emd(53):

Ffr,ﬂ=—37’;-*r‘-“f17m+ (A+b- .’—"}r)fr!? r+ Wheyw) -Ley § —w ], (36)
The derivative is wFT) == DRT tog i 7p35) 2%y, (89)
50 that the condition of equilibrium is g

T /e Y (38)
In agtusl cnleulstions the following pointe mey prove helpfal:
{1) The wd by a ecns Af Var end Vgs ore both re-
plocet by £(0VAa1¥s)-Vin o and Vs byfl) 0. To prove this let J be the
number of sites in the group neighbouring to the site <. Lot '{hu
changed into Y by the replacement. It is evident that
’L"F*’T%‘ E;‘ﬂ'{ mo. of B-B pairs - ne. cf. Aﬁ;ﬂ‘#:.),

DRz 0 %, G € BB pars - o el 44 paba.

Hemos < Tade] = 3t gt e VW gy P B0 VAT

if we put e ;E‘T'Eg_fl'.l' ‘ j""r'ﬁ-' tt}.‘(lﬁq—‘tﬁjfzi'r

where the + sizn or the - sign is to be taken acoording as the site «
llﬂnﬂcrnfﬂlitu. fle can now caleculate the new free enorcy and

*Gare must be taken when the theory is extended to ti
the case when the
IH:I:LG rotlo is not 1:1. Tho functiom ¥ in (35) must then be reploced
s¥+4iv’ whare w'is the function ¥ for the case when the group of
Grest has the same form as the original one but with « end A sites
nrohanged , -p

i
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verily the above statement.

(41) Sites that are syrmetrically situsted in the group have egual . 's
Arrespeciive of thelr nature if \g=Vir \eg=p s This has slready been
shovmn in the last section. Sinoe the moat t.rnruhlm part of the cal-

culations i= the climdnation of the pﬁl‘mﬁ, mich might be gained

by ehoosing a group with a large mmber of aites symetrieally situated.
(111) ZThe free energy is o function of a° , 80 that (30) is alwayp se-
tisfied at W=F=1 (i.6. long distance order = 0). The proof is simple
when we have alreedy mads Vag=6s. Ga=¢, 50 that ar interchange of A

and B atans does mot alter the energy. Thus
LT SRR (6 Tl Th ).

mm m ;’F gf{,ﬁ{’ B
s . WLl o (39)
we ge . e VAL g:u,""’F;*"f..e'T/#T.

Z g J??‘;%F,’Hf..e__.{m=r§:;yrg}1“’f..£- VR sq.% f,ﬂ‘y,fa..g’ff ¥ Nr,
L.e. $0p ps would be the soluiion of #R4F (52) with r substltuted
for w . henon by L (S8) and (17)

i W (1T =N-Nh"'g*-‘jwr£?_,u;’=-'~#fn‘r) 1

snowing that FO-b72=RET) - . (40)
[or A gcorner site 18 always g
€= e (ST - 3x) ()
By o corner
slte we mean a site that has only one nearest neighbour in the group.
Let ¢ be the seleotive varisble (parameter) of a cornar site, and p4
that of its only neighbour in the group. If the corner site is drop-
ped, a new group is obtained. We distinguish all quantities raferring
to thds mew group by a prime, and obtain at once

P ———

— e
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YN e ALByees (42)
The sites of the primed group are numbered in the asma way as in the
unprimed group. Introdueing the variable x defined in (9) we may write
$=Eiedpl. eVl
-ﬁumm&ﬂ’“wg: @t g 4o
Let these two terms be demoted by ¢, and ¢ respectively. dince
Pun ,-ng,{-rh :

we have heNr , delw . (22) ]
Yiow edB. Xy, M g, !
Hence €2¢ <l leads to ' |

Toax N+ Zox Melle (45) |
or -; -%‘-:—;—’, {+6)

the solution of which is (41). Thus the two parameters s« and » in the i
approximation diocussed in section 2 are equal to < ,
(v] Ihe "eontribution” to_the frée nurﬁ ¥f from a cormar ctanm i3
suoh that, in the notations of (iv),
P(r.T)= For,2) LR (2,7) , (37)
where F.(r,7) is the free emergy whem ¥=1, 1.e. ‘the free energy in
the approxinmation disoussed in seectiom 2. Thig ie proved sz follows,

If we put | '3"’7,%,,— . {;,-ﬁué:;;,,ﬁ-yf_. szl (48) <

it is evident from (45) that  would becoms a funotion of o ps g
satlsfying the relations
Vop 13- , H%fvﬁ%hm, A=1,2,00s , (42)
It is aldo evident that ¢ is the seme function of g';’ i sttt one #’
ie or ¥, {u,’,r{,---. YNow (42) hes only ene” set of solutiocn in £ ana
‘|Ig_-’. dence from (49) we infer that ¢ f";" ' ,H‘f,l-"."- Thas
3 3mer s MeMLES pewd . Az, (00)

[41) and {50) give the parametors g in terms of py’. Inserting thaa into
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(38) we obtain i
i R g e e
=% r'lr.ml-nmg{u-;l{mnonhﬂog{ﬂex )+wlog<3X.].(51)
If the original (unprimed) group is a pair of neerest neighbours, we
have -/=1, and (51) reduvees to the expression for the free emergy in
the spproximation discussed in seotlon £:
B, 7)== JUAT[(1-§) (rlogrwilogn) +xdos( 1+ €x )+ wlog <2X] (52
Inserting this baek into (G1) we get (47).
5. COMPARISON WITH BETHE'S METHOD
The so-oalled looal grand partition runetion™> * ® in Bathets approd -
mations with long-distance order is idemticel in form with our funtion
¢ when ell the "interior sites" in the group have the sene permmeter p,
For the case of scual concentratioms for the two kinds of atoms, which
is the ozse go fer considered, thils parameter hnsz been put gequal o
unity by Bethe. Sinoe the different terms of the logel grand pertition
furetion stand for the pguhnbiuﬂ.u of cogurence of the corresponding
lognl mu:pa in the erystal, it 1s olear that Bethe's method with long-
aistance order is sssentially ¥i¢ equivalent to our method plus the assum-
ption that the free energy (55) has & minimuwa when
(F)mhm'r sites=1 - (53)
EBut o3 we have shown that (58) gives the condition of & nminimum of the
free energy, the complete® idemtification of Dethe's and the quesi-
chemical methods in any approximation reduces to the mathematicel proof
-of the equivelence of (58) amd (53). While this presents no diffioculty
at all for Bethe's first approximedion (section?), a general proof is
by no metins easpy. We oan only satisfy ourselves with the sggertion that

- e

*gomplete" as far as the probabilities of ocourgnce of the locel con-
Tlgurations rre concerned. The energy caleulations are different in
the two methods.

8Basthope, Froe. Camb, Thil. Sos. 38, 502(1937).

W 1 1 = S 18 S
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the two nthn-;l: are squivalent for large groups, 1.e. groups for which
Mb-if«qf :
This follows Trom the fact that if (53) is true

[ ™ ¥ P2 109, censor sives] ®1 »

so that by (57) sEF(r,T)=0 .
To aee how the equilibrium free energy #(¥,T) varies with T in high
order approximetions, we substitute (38) into (36) and make use of (32):
~srr A 0al Zptptt . AT L (e v M )lor ¥ .
The last term is very small for lerge groups, so that by (53)
- T =3 Welze VAT)
6. THE NON-IWIERFRERIGGE 0 LOCAL COMNFIUTATIONS
Let us return to the ifundementol assuptlion of the guasi-ghemical
method, 1.e. to (51) whieh gives the average mﬁﬁfigﬁﬁﬁ configu=
rations( so far called groups | in the crystol. Widifgdidfing £11
dddrdr?€ipgd This equation expresses the exact distribution lew of an
asgseubly of molesules (of. the exaple in section 2) which hes an
encriy '13' times as large as the orystal. Distinguishing all quanti-
ties referring to the assembly of molecules by a subseript m, we get
F(r,7)+ #Tlog §(x)=7 [7,(x,Pirbriog 9 (x)] ,
which is obtained from (4). But if H is the number of arrangements in
the erystal lattice having the given valuss of [1, ,%a,+** ],

rlr.!l--ﬁmnfﬁfi . (54)
Thus log i '}'J-D&. K .
Fe et =0 1
But* H- -?—E:;:-:.j..‘ : “55}
hene~ dropping the bar we get ; ;
; H -h[rlfm%}:;}f}% (56)
vhore B(r)=glz)/ {4(=)}¥ . e

*Fowler, Statistical Mechanics, second edition, sections 2.6 and 5.11.
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Lquation (56) has been referred to in Fowler and Guggenheim's papurl as
the mathematical expression of the "hypothesis of the non-interference . |
of looal configurations”, begcuse when -}3-1. the number of arrvangements
in the orystel consistent with the distributioh law fy 4., -+] Tor the

I -
groups of sites is, exoept for the factor h(r), equal to
Nlr
| W FOT e v
whieh is the nymber of arrangauents in the erystal for the given values

of i ;0 ,+°"] if the I groups in the erystel are lmegined to be geparated
and are filled jadepeniently with atoms. The term "non-intarforsage®™ °,
oomes from the fnot that astually the N sroups are nob geprrcted but
are interlocked and gaunot bo £illed indepepdently with otoms, i.e. they
"interfere” with eash othar.

To find the value of ?n{’-'} we notice that by definition Jar ZH,. Bub
ZHy 18 the number of arrangements in the N seperated groups considered
above Af they are to be so filled wﬂ.t.h atoma that Wr of them have wrong
atoms on the sites ¢, ¢=1,2,+*: , Jmong the I sites { of the N groups

W%ﬁd diiferent arrangements are possible. Henco®

! o 2k
Qo™ 20 Z g oy =[ i rmi?{m; (58) ,
i 2
Thus . hip)= [ mﬁm,] & (59)

&
The free energy of the erystal may be obtained Iron {g;}, {‘;%} and tﬂ}:
¥(r,7)=E- 1");_*1'}:&%-2?}[:-1@”1@: ) +logii=p2la,  Lxs ++ <] 108]Q 1 dzs* "]}
whieh has hesn obbtained above by Integretion.

“It might be mentioned in pasasing that for tha speeizl case considered
in seotion £, (58) gives dlrectly the value of the sum Z,in ejquation
(5.5) of Fowler and Guge "s paper if their r and g cre equal. The
generelization to the ease gq is however eaay. The result im

i .I!:;h'}r . - ﬁ#]' e (60)
Dwtr=01 e Lwc-r=g 0]V TINCE-0T1 [INTTIL3we-0]! Tang ]! [gn 47!
which is exset. The walue of log 3, given by (60) reduces to the appro-

ximate expression that Fowler =nd Cugsenhein obtained by ldentifying =, {
with its masimwm term when N is large.
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Y. SPECIAL CONSIDERATIN & CONOEUING BETHE'S
FIRST AD SECOND AFTROXIMATIONS
(1) ﬂm_gmﬁ@g.lr an <-glte together with its 3% nearest
noi;hhﬂunmtam as oir group of interest, all the sites except
the central one are ocorner sites. Hende tielr selectiw variables are
all equal to the value of < given in (4l). By successive applications
~of (47) we ses that the free enorgy is exactly E(r,T), a faot which

hes alresdy been pointed out by Vowler end Guggemhelnm®. The selective
vorianle of the centrel site is given by suecessive spplicotions offlo)

AMf(LLEN (1)
The factor W'r iz the soleetlve voriable for the genmtrel slte when it
elone forms the group. The equilibrium comdition (53) becomes

AP (fe)!
But by (61) and (45), A= (w/e)Fed
Henoe at eguilibrium A =l , (62)

[
[
|
Thus the approximation is completely eculvalent to Bethe*s first appro- {
uﬁm , a8 already meitlioned in section L. l]
(11) Segond ipproximetion. liow consider mnmorutuwém ‘
in Bethe's sccond nppn:d.unﬁ.nu’. Acpording to seetion 4 ,{iv), the se-
lective veriahles for the corner sites in the second mcll are all equal
to € , which ig given by (41). But ia Jgf¥ Dethe's originel coleulatims, |
the selective variables for the cormer siles and the medluz sites ore ]
mede Squal, end are found to be different from € , Thus if we use J
his ordimnl matmd. equ=tion {5:3} can oot be satisfied, {In fiif other
warda, the prqb}!;li‘a'.ﬂhﬂur numu;pm- of wpon: stoms in t.he corper and
the medium o tes JL4g . unoqual,)
For simplieity we shall drop the corner sites and take as cur group
of interest the cemtrel site, the first shell sites and the medium
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sites; with selsctive veriehbles g , » and A respectively.(The contri-
bution ¥g fig rred grgddy %} w sorner sites can be included im the
frec chorgy by aimple addition as shown in seotion 4 (v].) With the
notations n, il cnd Gum of Bothe” we find, £ T _
=S F [ a4+ pxdTiR (2 A) 0 (63)

-y
whera | Zp(xpA) = VZ G142 ) %] X% R "“{.'I.Hﬂd_%*}‘!.
Afver ﬂlir:im.. eng M, (52) becomes

- B x*"’i"rl’.a Rt whAS ) Y. e Bv2 P+ WhS BY) . (64)
Gz K'P.}q‘.‘;!"'ﬁ (Z%"R }{zx B

The ires enﬂr;;s is obtaincd from (36):

Fle, == ﬁ{; -—ﬁ.}-ii}[rlﬂmwlmhrlng!x"l*nﬂlnﬂly“ &-}ulﬂsr-qf-i}fgq .

8. ark '...1¢_.'..'.'-L1‘: L TS CEYSTAL Cugia

~ dor tne feco-centyed crystal Cughu, we may of course follow relerls?
and teke ap our group a ¢entral aite togother with its twelve first
shell oeighbours. The froe snorgy scpression would then comt~dn BWBEB
selestive variables®, four of which can be ellpinate’. The resultent
expresalon ia very cumberscme and numerieal l#;ﬂ.lﬂulﬂtiﬂmi would be im-
vorious. e therefors make n simpler spproxinstion: the group is token
%o be four heurest neighbours forming e tetrehedron. Alittle geametri-
eel comsideration assures s that ell such tetrahedrons contain an
si=gite (for gold ateus) axd ihres I,d—aitea{_':or conner
atoms), an interesting conclusion showing that the te—
) trahedron mizht be rngm.?m as a lmft of "moleoular®

Fig.2 strusture in a fece-centred la;r.tict wlth atooic ratio
1:%. Gur approximation may thus be Fesmsonably expected to raveal the
wore luportant features of the orer-disorder transfurmation in such

- e

*Jor@epenirod groups,thres,and _fo2 p-centired , fowr, par-mdbers are neco-

4 Baory. Soth these ‘tmo ki of g¥oups must be considored bDocause gther-

wise the enargy of tie orystal mumt be easlly obimined from the
qanr.:.- gy of the groups in the exystel
veierls, l'roc. Lioy. co0. m&ﬁ mtlml

4
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Let p and V¥ be the peremeters {for wrong ctoms) of thes-sites and the
J-sites respectively. Let there be altogether & atoms. It is enmsy to
see that there are @ groupe in the u:;‘mtal. Vhen Mw atons on the «-gites
are wrong, the eguatlons dotemuining the pn.*nmtm are

A=t ;thau'?ai axﬁu +x6uds 2 (x +!x§ﬂ+axju +xju')} (6ca)

i 232 = 20 ( X4 I+ 333 X3, . (66b)

and mﬂ}'}*&#—%’)ﬂﬂg}-ﬂ% = 3 $[1+ 2xp#xtu e 2 Ore 2p+ xat)], | (e8e)
whero x is #fdd defined by (9). The cnerg of the crystal is (of.(34)),
'i-ii'r’-&-f-mm* ; " (67)

80 that the frec encry bocomes (ef, (U5))
" B M)kt [ Logaiw)e(#-alogs-thilogy-EN10g M)y T o
But lng;ur]--l{IMIMII#HWMTHHJMM}I*]‘f ‘
end at Teoe put F-a_w . g-fﬂi{l-wlil-ﬂl .
ol e e eleta
Sinee £ =nd »r oan be vary aasily solved fram (GE€), mmriau enlenlations
are guite gimple. The urmu!.‘l:rrim value of w 1z glven by hf. {(37) and(34)

thﬁlm“ wxﬁ ﬁr]* ‘lﬂg'}lﬂ ; y -{ﬁ"'}]
This 1o olweys sotiafied s.t.v-*' Actusl crlgilntion shows that the shso-
of the I'ree

lute uinir i, i .}ﬁmt &% w-i: according fs W L2985 or %<.2785 . The
vilued ol ihe free energy is plotted in IMig.3. From the form -::Ir.. th= graph i
it is setn thai the eryatel has n.'ar;tiuu.'l. temparctore et which the long-

I éistauce order and(hemee)thp enexrcy are dlscontinaous. The critien) terpe- T

rasure ¥, and the latemt hdat @ cre.found o he |
SR S
*Teis is not evident from fu:!} direetly. But if we divide thn whole orye-
tal into four sublattices whioh are all shaplo cuble omd iptroduce a w
for eac: subleitios 80 that Nwy is the mmberd of A atoms on the L-th
Iubl‘ltt.iua Elﬂl,,.,:‘l 4), it 1a Obvious that the Ipee enercy is oymwotriesl |
in tie - s we infar wat (89) ia Grvietled atmd.
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P,*.8228 £ 4(Uan + Vpp )=Va ] , @=.0324 [ (Taa+ Vg )=Vas] .
In terme of the total energy change from T=0 to Tua
1=BN[ 4 (Vas + Von )=lan |

L]

these quantities become
To=1.097%/R . (Ty=2.195/R in Bragg-Williems® approximation and
Tg¥1.58, /i in Peierls' approximetion.)
=.29418, , (@=.2138, in Bragg-illisms' approrimaticn and
2,565, in Pedleris™ approximetion.)
whers R stends for 4NA . ' '
It will be noticed that due to the lesk of a
free 'mm'gr expreasion releria? did not give the
—F{L—[ oot values of these quantities,
[ In couclurion, the suthor wishes to exproesgs
L hig thanka to Frof. d. 5. #ang for walnable
eritioimm iigd) ad navice.

]
L

b ot

3 \ [e=

G RRRNNY

3 i&/f & Hféa}x&
e éjif . o4& ds o

Pt = R
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