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i. Introduction

Let M be a compact, C* riemannian manifold of non-positive curvature
with fundamental group 7,(M). It is well known that M is a K(r(M), 1)
and therefore completely determined up to homotopy type by 7,(M). Further-
more, every element of 7,(M) must have infinite order, and in the special
case that M has strictly negative curvature, every abelian subgroup of 7,(M)
must be cyclic. The natural questions then arise whether deeper statements
can be made regarding the structure of the group 7,(M) and to what extent
the structure of the group 7,(M) influences the riemannian structure of M.

The purpose of this paper is to establish the following facts in this
regard.

THEOREM 1. FEwvery solvable subgroup of =, (M) is of finite index over a
Jfinttely generated abelian group. In fact, every solvable subgroup of m,(M)
18 a so-called Bieberbach group.

THEOREM 2. Let G be any subgroup of m(M). If A is a subgroup which
18 subnormal and mavimal abelian in G, then G is of finite index over A
and hence a Bieberbach group.

Theorem 1 gives in the following corollary an affirmative answer to a
question raised by J. A. Wolf [4].

COROLLARY 1. If w (M) s solvable, then M is a flat manifold.
There are also the following consequences of Theorems 1 and 2.
COROLLARY 2. Ewery solvable subgroup of w (M) is finitely generated.

The following result has also been obtained by William Byers (Generali-
zation Of A Theorem Of Preissmanmn, Proc. Amer. Math. Soc.).

COROLLARY 3. If M has strictly megative curvature, then every sub-
group of w, (M) which contains a subnormal abelian subgroup is cyclic, and
hence every solvable subgroup 1s cyclic.

The author wishes to express his deep gratitude to Professor H. B.
Lawson for his many invaluable suggestions. He also thanks Professors
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Chern, Kobayashi and Sah for several helpful discussions.

Note. The author has subsequently learned that a proof of the first
part of Theorem 1 has also been recently given by J. A. Wolf and D. Gromoll.

2. Basic lemmas

Throughout this part, we shall assume our manifold M is compact and
of non-positive curvature. The proof of the Flat Torus Theorem in [3, § 2]
essentially shows the following:

LEMMA 1. Let {a,, o, oty +++, @, be a finitely generated abelian sub-
group of w(M, p) for some pe M. Then there exists a euclidean space R*
totally geodesically embedded in the universal cover M of M such that R* is
mvariant under the deck transformations corresponding tola,, a,, «--, a,).

LEMMA 2. Every abelian subgroup of w (M) is finitely generated.

Proof. We shall consider our group 7,(M) as a group of deck trans-
formations acting on M, the universal cover of M. Since it acts freely on 17,
it is immediate from Lemma 1 that every finitely generated abelian sub-
group of w,(M) has rank < dim M. Let A be any abelian subgroup of 7,(M).
Let {a,, @y, +++, @,> be an abelian subgroup of maximal rank (= ») in A.
By Lemma 1, there exists a totally geodesic euclidean space R" embedded in
I which is invariant under {ay, ayy +++, @,). From now on we shall denote
such a euclidean space by R(«a,, «,, ---, a,; 0) Where o is an arbitrary fixed
point in this euclidean space. We shall also consider R(«a,, a,, - -+, «,; 0) as
a vector space with origin o. The transformations «,, «,, - - -, «, correspond-
ing to translations ¢;, ¢3,, - -+, tz, where &, &,, - --, &, are the displacement
vectors corresponding to «,, a,, -+, «, respectively. Let C = {x|z =
2 @€ R(a, &, «++, a,;0), 0 <a; <1}. Then obviously C is a bounded
parallelopiped in R(a,, «;, «++, @,; 0). Suppose {a,, a,, +++, &, is not equal to
A. Then for all ge A ~<a,, a,, -+, a,) there exists k£ > 0, such that g* ¢
layy ay o+, @), because {a,, a,, + -+, a,) is of maximal rank. Let 3, be such
an element. Obviously, we may assume that there exist 7,, 7,, ++-, 7,, with
0, <k for j=1,.+-,n such that g = alaf2 --- aj». By Lemma 1,
there exists an R(ay, @y, +++, @, B;; 0,) for some o, in M. (Note that in
applying the Flat Torus Theorem of [3, §2], one may think that the
base point of I is changed when we minimize the sum of the lengths
of the geodesic loops. In that case, {«a,, a, +--, @,, B, are changed to
{97, 9709, < -+, 97,9, 7'B9) for some gem(M, p). However, the
difficulty is overcome by noting that gR(9~'a,g, 97 a9, +++, g7'®.9, 97'B:9; 0)
is invariant under <{a,, a,, -+, @,» where o is the original base point.) Let
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C, be the corresponding parallelopiped for {a,, a, -+, a,» in R(a,, as, « -+,
@, By; 0,). Then since the infinite geodesics which extend the edges of C and
C, are translated by a,, a,, -+, @, respectively, the corresponding geodesics
are of the same type. Hence, the arguments of [3] show that the correspond-
ing edges of C and C, are of equal length. The diameters of C and C, are
therefore bounded by a constant depending only on «,, a,, +++, @,. Now from
the relation B = ajajz -« - ai», we know that if 3, is the displacement vector
corresponding to B, then 3,eC, and of course 53, = @; for j=1,2, -+, n.
Thus, if A is not finitely generated, we can construct inductively a sequence
of parallelopipeds C; with vertices o; such that for each 7, C; contains the
n + 1 distinet points a,0;, -+, @,0;, B0;, +++, B:0;. Since M is compact, we
may assume there exists a sequence {9;} < 7,(M) such that g;(0;)— p for some
pe M. Let L be the uniform bound for the diameters of the C/s. Then L
also bounds the diameter of each g;C;. Now consider the ball B of radius 2L
at p. For every sufficiently large ¢, B contains » + ¢ distinct images of a
point under the deck group of the covering. This contradicts the proper
discontinuity of this group and establishes the lemma.

LEMMA 3. Let G be a subgroup of w(M). If G is normal over a maximal
abelian subgroup A = {a,, a,, +++, a,», then G is of finite index over A.

Proof. Assume without loss of generality that A has rank n. As above
let &, .-, @, be the respective displacement vectors oa—l(:)), cone, o?(o) in the
euclidean space R(a,, «++, @,; 0). Then for each i, g~'a;ge<a,, ++-, a,> and
thus, ¢~'a,g = Z;lenijaj for integers n;;. Consider the vector group A =
L&, &, +++, &,» with the induced metric from R(a, a, +--, a,;0). Let
R, A— A be the homomorphism defined by R,(&;) = Z:.‘zl n;&; for ¢ =
1, -+, n. We shall prove that R, is an isometry.

In fact, since g is an isometry, it maps R(a,, a,, -+, @,; 0) to a totally
geodesic submanifold M’ which is again isometric to a flat euclidean space.
This manifold M’ is also invariant under «,, a,, - -+, o, due to the fact that
A is normal in G. Hence, it is trivial that a; translates the geodesic passing
through ¢(0) and a;g(0). By the arguments of [3], we know that for all 7,
d(9(0), a:9(0)) = d(o, i(0)), where d denotes the distance in M. However, for
each 7, d(g(0), :g(0)) = d(o, 9~'a:9(0)), and thus d(0, ai(0)) = d(o, 9~*ct;9(0))
which proves that R, is an isometry of A.

The number of such isometries is finite, for if L is the maximum length
of the vectors &,, &,, -+, &,, then the closed ball B(L) contains &,, «+-, &,
and finitely many other vectors &,,,, -+, &, of A. Since all the R's are
isometries, they must map B(L) onto itself. Since the set of points &,, «- -, &,,
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Rpiyy *++, A, is left invariant and R, is determined by its valueson @, - -+, &,,
the number of distinet R)s actually divides m!. We now note that R, = R,
if and only if b~'a;b = ¢~'a;e, for all i. (Recall that G acts freely.) This
means R, = R, if and only if ¢b~'a;bc™ = «; for all .. By the maximality of
A, we know that R, = R, if and only if ¢cb—' e A. Hence, A has only a finite
number of cosets in G, i.e. [G: A] < <.

Remark: G is a so called Bieberbach group.

LEMMA 4. Let 1 | F <| G be groups. Suppose F is finite and G/F is
abelian. Then there exist subgroups A,, A, of G such that: 1 <| A, <| 4, <] G,
A, is a finite group contained in the center of A,, A,/A, is abelian, and G/A,
s finite.

Proof. Let A, be the centralizer of F in G. Then A4, <] G, and G/A4, is
finite. In fact, consider the action of G on F' by inner automorphisms; then
the kernel of such an action is 4, and G/A, is isomorphic to a subgroup of
Aut (F') which is finite. Now let 4, = 4, N F. Then obviously A, is finite
abelian and is contained in the center of 4,. Finally, 4,/A4, = A,/JA,N F =
A,-F/F is abelian.

LEMMA 5. Let 1 <] A, <{ A, be as in Lemma 4. Then there exists a
subgroup A; where 1 <] A <] A, and A} is abelian, and there exists an integer
n such that for all ae A,, a~ e Al.

Proof. Consider the group A4, = {a"|a € A,) where n is the cardinal of
A,. We claim that A, is abelian. In fact, for all a, b ¢ 4,, ab = bat for some
te A,. Hence, a’b = abat = batat = ba** (since t is in the center of A4,) and
thus a"b = ba™" = ba".

3. The main theorems

THEOREM 1. Let M be a compact riemannian manifold of non-positive
curvature. Let G < w (M) be solvable. Then there exists an abelion subgroup
A < G such that [G: A] < <, and G 1s 1n fact a Bieberbach group.

Before proceeding to the proof, we shall examine some consequences of

this theorem.

COROLLARY 1. (Wolf’s conjecture.) Let M be a compact riemannian
manifold of non-positive curvature. If w (M) is solvable, then M is flat.

Proof. By Theorem 1, there exists an abelian subgroup A in 7,(M) with
[7(M): A] < =. Let M be a cover of M with fundamental group = A.
Then M is compact and hence by lemma 1, I is flat. Therefore M is flat.

SELECTED WORKS OF SHING-TUNG YAU: 1971-1991



On the fundamental group of compact manifolds of non-positive curvature

MANIFOLDS OF NON-POSITIVE CURVATURE 583

COROLLARY 2. Let M be a compact manifold of non-positive curvature.
Then every solvable subgroup of M is finitely generated.

Proof of Theorem 1. Let 1 =G, <]{G, <G, <]++» <]G, = G be a sub-
normal series such that G;,,/G; is abelian for ¢ = 0,1,2, -+, n — 1. Let G}
be a maximal abelian subgroup of G, which contains G,. Then since G,/G, is
abelian, G| is normal in G,. Lemma 3 shows that [G,: G!] = k < <. Consider
now the partial series 1 = G, <] G} <] G, <] G,. Let {a,, a,, ---, a,} be a basis
of G|, and let @ be an arbitrary element of G,. Then for each 7, a~'afa e
{ay, ay, <+ +, @, since G,/G; is finite of order k. Let G; be the centralizer
subgroup of {af, af, -+, a¥> in G,. We claim that [G,: Gi] < . The proof
is similar to that of Lemma 3. Namely, for each a € G,, consider the mapping
Ry @y @y ey @, — L@y, @y + -+, @, defined by R.(@) = a—ata for i =
1,2, .+, p. (The &,’s are as defined in Lemma 3.)

This map stretches the length of every vector by the factor k. In fact,
the isometry a maps R(a,, a,, - -+, a,; 0) to M’, a totally geodesic submanifold
isometric to R?. Since for each ay ¢ M’, we have a‘ay = aa’y ¢ M’ for some
o' elay, a, -+, a,», we know that M’ is invariant under af for each 7. Hence,

d(o, a~'atta(o)) = d(o, ak(0)) = kd(o, ct;i(0)) .

Let B(L), B(kL) be as defined in Lemma 3. Then every such R, maps B(L)
into B(kL). Since both B(L) and B(kL) contain a finite number of a’s and
since R, is determined by its values on &,, &,, + -+, &,, the number of such R,
must be finite. As in Lemma 3, R, = R, if and only if ba~'afab~ = af for all
i, i.e. R, = R, if and only if ba~' € Gi. Hence [G,: Gi] < «. We now have
the situation

1=G6GG6rGaELENE]EGE <G
where Gi* = {a¥, ---, aty and G'* is normal in G;. Hence,

(G, N G: GI'] < [Gu: GG GP] < o

and G}/G, N G, = G,-G}/G, is abelian. By passing to the quotient by G}* and
applying Lemmas 4 and 5, we know that there exist solvable subgroups G;, Gy’
such that
1]GF GG G <Gy

with G;/G}* abelian and [G}: G}] < <o, and there exists an integer » such
that for all g€ G/, g" € G,. By Lemma 3, we may enlarge G/* to a maximal
abelian subgroup G} <] G} of finite index. Hence, there exists an m such that
forallg e GY, g™ e G¥. Weassert thatif A< G are solvable subgroupsof =,(M),
if A is abelian and if there exists an m such that for all g € G, g™ € A, then
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there exists an abelian subgroup A’ < G such that [G: A’] < . In fact, let
A ={a, a, -+, a,). Then as aboveif G’ is the centralizer of A™ =
{ar, <+, ar> in G, then [G: G'] < . Thus, we are reduced to the case
A < G where A is abelian, G centralizes A and where there exists an integer
m, such that for all g € G, g™ ¢ A. However, under these new conditions we
claim that G is itself abelian. In fact, let g,, g.€ G be arbitrary. Consider
the group G’ generated by A, g,, and g,. This group is finitely generated and
centralizes A. Furthermore, G’/A is finite. Then by a theorem of Schur-Baer
[1], the commutator group [G’, G'] is finite. However, since no element of
7w, (M) has finite order, we have [G’, G'] = 1. Thus G’ is abelian, and in
particular g,9, = ¢.9,. This proves the assertion. We now have the following
situation:

I <G LELGLEL] -

where G{ is constructed in our assertion (with A = G} and G = GY'), and
where

[Gs: GY] = [Gs: Gi][Ga: GYN[GY: GYl = g < oo
The technique above then shows that if G, is the centralizer of G/ in G,,
then 1 <G/ <] G;N G, <G <G, with [G,: G]] < =, Gi/G,N G, abelian,
and [G; N G{: GY] < . In this way we climb up to the group G, = G and
prove the first part of our theorem.

It remains to prove the last assertion of our theorem. Let A be an
abelian subgroup of G such that [G: A] < . Then by the counting principle
of group theory, we know that the number of distinct conjugate subgroups
of A in G is finite. (The number is actually equal to the index of the
normalizer of A in G which is finite.) Hence the subgroup A’ = ,.c gAg™"
is normal and of finite index in G. Of course, A’is still abelian. We claim
that the centralizer Z(A’) of A’ in G is normal in G. In fact, let b be an
arbitrary element in Z(A’). Then foralla e 4’, g € G, we have, as A’ is normal
in G, gag™'b = bgag™, i.e. ag~'bg = g~'bga. This implies that for all g € G,
97'bg e Z(A'). Hence Z(A') isnormal in G. Since A’ is of finite index in Z(4'),
we know from our assertion above that Z(A') is also abelian. We have con-
structed, therefore a sequence of abelian subgroups in G:

A = ZO(AI) < ZI(A') < ZZ(A') < e & Z”(A') < Z”“(A’) < eee

where Z"+'(A’) is the centralizer of Z"(4’) in G, for all n = 1, 2. By Lemma
2, we know that every abelian subgroup is finitely generated. Hence,
Uil. Zi(A’) is a finitely generated abelian subgroup, and thus for some u,
Z"(A") = Z(A'), i.e. Z*(A’) is maximal abelian in G. The argument above
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then shows that Z"(A4’) is normal and of finite index in G. By definition, G
is a Bieberbach group. This completes the proof of the theorem.

The same technique can be used to prove the following theorem.

THEOREM 2. Let M be a compact riemannian manifold of non-positive
curvature. Let G < w (M) be an arbitrary subgroup. If A is a subgroup
which is subnormal and maximal abelian in G, then G is of finite index over
A and hence a Bieberbach group, i.e. if A is maximal abelian in G and if there
exist subgroups A,, A,y -+, A,_, < G such that A<]A, <JA, <] - <]A4,..<G
then [G: A] < .

COROLLARY 3. If M is a compact manifold of strictly negative curvature,
then every subgroup of (M) which contains a subnormal abelian subgroup
18 cyclic. In particular, every solvable subgroup of ©.(M) 1s cyclic.

Proof. Let G be the subgroup and A the abelian subgroup. Observe
that by Lemmas 1 and 2 every abelian subgroup of =,(M) is cyelic in the
strictly negative curvature case. Thus A is cyclic and following the argu-
ments of Theorem 1 we see that A is of finite index over a cyclic group.
Since G is a Bieberbach group, G must be cyclic.
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0. Introduction and statement of results

Let M be a compact C* riemannian manifold of nonpositive curvature' and
with fundamental group z. It is well known [8, p. 102] that M is a K(x, 1)
and thus completely determined up to homotopy type by z. In light of this
fact it is natural to ask to what extent the riemannian structure of M is deter-
mined by the structure of z, and the intent of this paper is to demonstrate that
rather strong implications of this sort exist.

In the case that M has strictly negative curvature, the group = is known to
be highly noncommutative. Every abelian, in fact, every solvable, subgroup
of z is cyclic [3]. It is therefore a plausible conjecture that in the nonpositive
curvature case, n will possess large amounts of commutativity only under
special geometric circumstances. We shall show that this is true, that indeed
those properties of = which involve commutativity have a dramatic reflection
in the riemannian structure of M.

Our first theorem concerns abelian subgroups of z, which, since no element
of z has finite order [8, p. 103], must be torsion free. As remarked above,
when M is negatively curved, every abelian subgroup has rank one. However,
when the curvature of M is simply nonpositive, we prove the following.

The flat torus theorem. There exists an abelian subgroup of rank k in
if and only if there exists a flat k-torus isometrically and totally geodesically
immersed in M.

The second theorem concerns the case where r is a product of groups. In
particular, we shall prove:

The splitting theorem. Let M be real analytic and assume that = has no cen-
ter. If = can be expressed as a direct product of groups # = &/, X -+ X A y,
then M is isometric to a riemannian product M = M, X --. X My, where
nMy) = A, fork=1,...,N.

It is shown in § 4 that in the case that z has a nontrivial center, the splitting
theorem, as stated, is not true. However, by a slight weakening of the conclu-
sion, one can obtain a similar theorem for the general case.

As one may by now suspect, the appearance of a nontrivial center in = must

Received July 24, 1970 and, in revised form, July 21, 1971.
* Throughout the paper curvature refers to sectional curvature.
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also have strong geometric consequences. In fact, from the work of J. A. Wolf
in [12] one has

The center theorem. Let & be the center of n. Then % ~ kZ for some
k>0, and there exists a foliation of M by totally geodesic, flat k-tori. Further-
more, there exists an abelian covering T* X M’ — M of M by a riemannian
product of a flat torus and another manifold M’. Let /" = r,(M’) and let o/
be the abelian covering group. Then A" is a normal subgroup of = which con-
tains [r, n], and the following sequences are exact:

1l XN >n—>od -1,
0% X (Nlz,z]) > HWM,Z) > 4 — 0.

As particular consequences of this theorem we have that if & ~ kZ, then:
(a) there exist k linearly independent globally parallel vector fields on M,
(b) the torus group T* acts effectively by isometries on M.

In § 5 we show that these geometric quantities completely characterize the
center of z, namely:

(a") Suppose there exist exactly k linearly independent globally parallel
vector fields on M. Then rank (%) = k.

(b’) Let I(M) be the group of isometries of M. Then I(M)" ~ T* where
k = rank (Z). Furthermore, if g e I(M) ~ I(M)°, then g is not homotopic to
the identity.

Part (b’) together with the center theorem gives a generalization of a theorem
of T. Frankel to manifolds of nonpositive curvature (§ 6).

In all of the above theorems the compactness of M is required. In fact,
Bishop and O’Neill have shown that there exists a complete metric of constant
negative curvature on R X F where F is any compact manifold which admits
a flat riemannian metric (e.g., a torus) [2, Cor. 7.10].

However, in the last section we show that certain of the above results can
be shown to hold for complete nonpositively curved manifolds of finite volume.
In particular, a form of Gottlieb’s theorem is established for such cases.

We are indebted to S. Kobayashi for several helpful suggestions.

Note. Since writing this paper we have learned that J. A. Wolf and D.
Gromoll’ have obtained independent and somewhat different proofs of the first
two theorems, including a C* version of the splitting theorem.

1. Definitions, notation and basic lemmas

Thoughout the proofs of the main theorems of this paper we will need to
make repeated use of certain established facts concerning manifolds of non-

2 Added in proof. D. Gromoll & J. A. Wolf, Some relations between the metric
structure and the algebraic structure of the fundamental group in manifolds of nonposi-
tive curvature, Bull. Amer. Math. Soc. 77 (1971) 545-552.
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