
本章将带领读者进入Processing的世界,学习如何通过编程绘制基本的几何图形,如
点、线、矩形、椭圆等。同时,还将介绍颜色的使用和Processing的工作流程。本章的目的

是为读者奠定视觉编程的基础,帮助读者掌握编程创作的核心工具。学习这些基本绘图

功能是后续创意编程的重要起点,因为所有的复杂作品都是由简单的图形和颜色组合而

成的。

1.1 认识Processing

Processing是一个基于Java的开源编程语言和集成开发环境(Integrated

Development

Environment,IDE),专门为视觉艺术家、设计师以及初学者开发,帮助他们快速上手计算机

编程。它最初由Casey

Reas和Ben

Fry于2001年创立,目的是让人们能够轻松地将编程

与图形化创作相结合。Processing的最大特点是简洁易学,提供了直观的图形输出,用户可

以通过几行简单的代码生成复杂的视觉效果。

Processing在计算机艺术、视觉设计、数据可视化以及交互设计领域得到了广泛应用。
它不仅支持静态图形的生成,还可以实现动态效果、动画甚至交互式作品。与传统编程语言

不同,Processing注重创意编程的体验,使得非技术背景的创作者也能够轻松地实现自己的

艺术想法。
通过学习Processing,读者将能够掌握编程的基本概念,并在艺术创作中自由运用这些

工具。本书将从最基础的绘图功能开始,逐步深入编程的核心内容,帮助读者掌握编程技术

与艺术创作的结合技巧。

1.1.1 安装Processing
首先,需要下载Processing软件,下载网址详见前言二维码。Processing软件下载界面

如图1-1所示。单击Download

Processing

4.3

for

macOS按钮,安装即可。

2

图1-1 Processing软件下载界面

双击打开Processing工作界面,如图1-2所示,可以在这个页面中输入代码。当输入代

码后,需要单击左上角的三角形按钮 来运行代码。三角形按钮旁边的 按钮用来结束

代码的运行。

图1-2 Processing工作界面

1.1.2 绘制图形

本节将通过一个案例讲解如何用Processing来绘制最基本的图形。

3

如果想用中文来描述一条线,则通常会说:

从坐标点(1,2)到坐标点(4,5)画一条线。

Processing的语法也是非常类似的,可以用命令line(1,2,4,5)来绘制这条线。括号里的数

字叫作参数。前两个参数是第一个点的坐标,后两个参数是第二个点的坐标。
在使用Processing进行图形绘制时,需要特别注意其坐标系与在中学所学的坐标系有

所不同。在中学的坐标系中,X 轴是从左到右增加,Y 轴是从下到上增加。然而,在

Processing中,虽然X轴仍然是从左到右增加,但Y轴是从上到下增加。Processing坐标系

如图1-3所示。图1-3(a)为Processing定义的坐标系,图1-3(b)为数学中的平面直角坐

标系。

图1-3 Processing坐标系与数学中的平面直角坐标系对比

理解了Processing的坐标系后,就可以开始绘制各种图形了。
首先,使用point()函数,在坐标(45,45)处绘制一个点。输入如下代码。

 point 45

45

使用rect()命令绘制矩形,默认模式下,需要提供4个参数:

前两个参数是矩形左上角

的坐标,后两个参数是矩形的宽度和高度,例如,输入如下代码。

 rect 20 30 20 50

绘制的图形如图1-4所示,左上角的坐标是(20,30),宽度是20,高度是50。
如果需要,可以改变绘制模式。例如,使用rectMode(CENTER)可以使前两个参数定

义矩形的中心点,后两个参数定义矩形的宽度和高度。以下是代码示例。

 rectMode CENTER
rect 20

30

20

50

绘制的图形如图1-5所示,矩形中心点的坐标是(20,30),宽度是20,高度是50。

图1-4 绘制矩形运行结果 图1-5 用CENTER模式绘制矩形运行结果

4

那么后面的矩形就都会使用CENTER模式来绘制,直到绘制模式被更改为止。另外,
如果更 习 惯 于 定 义 矩 形 的 左 上 角 和 右 下 角 的 坐 标,也 可 以 调 整 模 式 为 rectMode
(CORNERS)。

绘制椭圆的命令是ellipse()。椭圆的默认模式为CENTER,前两个参数是椭圆的中心

点,后两个参数是椭圆外接矩形的宽度和高度。代码示例如下。

 ellipse 50

50

100

50

椭圆的绘制模式也可以通过ellipseMode()来改变,这里不再赘述。
三角形可以用triangle()命令来绘制,如triangle(120,300,232,80,344,300),这个命令

共包含6个参数,第1、2个参数表示三角形第一个点的坐标,第3、4个参数表示第二个点的

坐标,第5、6个参数表示第三个点的坐标。

Processing还有很多命令也可以用于绘制其他图形,这里暂时先学习这些。如果读者

想要了解更多的图形命令,可以参考Processing官网,网址详见前言中的二维码。
掌握这些基本的图形绘制方法后,就可以进行更复杂的创作了。需要注意的是,练

习这些基本图形的目的是熟悉Processing的坐标系和基本功能。Processing功能强大,
在实际应用中,不会仅用代码生成简单的基本图形,而是利用这些基础进行更复杂的

创作。
在开始第一个创作之前,还需要掌握一个基本命令———size函数,用于设置窗口的大

小。例如,size(400,400)将创建一个长和宽均为400px的窗口。需要注意的是,Processing
默认的窗口大小是100×100px。

练习1.1:

创建一个400×400px的窗口,在窗口中央绘制一个房子。
读者可以自己设计房子的形状,例如,如图1-6所示的房子包含矩形的主体、三角形的

屋顶、圆形的窗户和直线绘制的门。

图1-6 练习1.1绘制的房子参考图

5

1.2 Processing中的颜色

1.2.1 RGB颜色模式

 在Processing中,颜色默认用 RGB模式表示。RGB颜色模式由红色(Red)、绿色

(Green)和蓝色(Blue)三种颜色组成,每种颜色的取值范围是0~255。
此外,还有灰度值表示法。如果灰度值为0,表示纯黑色;

如果灰度值为255,表示纯

白色。
在Processing中,指定颜色时需要考虑边框颜色(stroke)和填充颜色(fill)。边框颜色

使用stroke命令,填充颜色使用fill命令。
如果stroke命令使用三个参数,则分别代表RGB值。例如:

 stroke 255

0

0

 设置边框颜色为红色

stroke 0

255

0

 设置边框颜色为绿色

如果使用4个参数,最后一个参数则表示透明度(alpha)。例如:

 stroke 255

0

0

128

 设置半透明的红色边框

类似地,fill命令的参数表示法与stroke命令相同。例如:

 fill 0

0

255

128

 设置半透明的蓝色填充

对于stroke和fill命令,如果只使用一个参数,表示灰度值;

如果使用两个参数,第一

个参数是灰度值,第二个参数是透明度。例如:

 fill 128

 灰色填充

fill 128

128

 半透明的灰色填充

图1-7 绘制红色填充的矩形

如果想改变窗口背景的颜色,可以使用background命

令,例如:

 background 255

 设置背景颜色为白色

如果不需要某个图形的边框或填充颜色,可以使用

noStroke()或noFill()命令取消边框或填充,运行结果如

图1-7所示。

 noStroke

 取消边框

fill 255 0 0
rect 20 20 50 50

 绘制一个没有边框并且填充为红色的矩形

此时的图形没有边框。如果绘制的下一个图形需要边框,再使用stroke()命令指定边

框颜色即可。
在Processing中,所有颜色值的范围都是0~255。如果不确定具体的RGB值,可以使

用Processing的“工具”→

“颜色选择器”选项来辅助选择颜色。颜色选择器提供RGB值和

6

HSB值的参考,如图1-8所示。

图1-8 Processing中的颜色选择器

1.2.2 HSB颜色模式

HSB颜色模式是另一种表示颜色的方式,其中,H 代表色相(Hue),S代表饱和度

(Saturation),B代表亮度(Brightness)。要使用HSB模式,可以使用以下命令。

 colorMode HSB

 设置颜色模式为HSB

在HSB模式下,色相(H)的取值范围是0~255,对应色轮的0°~360°。饱和度(S)和亮

度(B)的取值范围也是0~255。
如果要将颜色模式改回RGB,可以使用:

 colorMode RGB

 设置颜色模式为RGB

图1-9 颜色选择器中

的十六进制数

注意,Processing中的HSB模式与某些美术或设计软件中

的 HSB 模 式 可 能 略 有 不 同。Processing将 所 有 值 映 射 到

0~255。
颜色还可以用十六进制数来表示,但是这里不详细讲解十

六进制,只需要知道在颜色选择器中,在选定颜色后,右下角会

自动生成十六进制数,可以直接单击“复制”按钮,把这个数作

为颜色使用,十六进制数的截图如图1-9所示。

练习1.2:
将练习1.1中绘制的房子上色,为你梦想中的房子涂上颜色吧!

1.3 Processing工作流程
在使用Processing进行动态交互图形创作之前,需要了解Processing的基本工作流程。

通常,会使用两个主要的函数setup和draw。其中,setup函数用于初始化设置,内容只会

7

执行一次;

而draw函数会在每一帧更新一次。
在Processing中,帧(Frame)的概念是指每秒钟更新多少次图像,在默认情况下,

Processing的帧率是每秒60帧(即每秒更新60次图像)。
可以通过使用 mouseX和 mouseY来获取鼠标的位置,并利用这些坐标实现简单的互

动效果。
以下案例实现了一个简单的动态交互,代码如例1-1所示。
【例1-1】 鼠标动态交互。

 void

setup

 size 400

400

 定义一个400×400px的窗口

 background 255

 设置背景颜色为白色

 noStroke

 取消图形的边框

 fill 255

0

0

 使用红色填充

void

draw

background 255

 每帧都重置背景颜色

ellipse mouseX

mouseY

40

40

 绘制一个随鼠标移动的红色椭圆

运行结果如图1-10所示。

图1-10 绘制红色小球运行结果

为了更深入地理解Processing的工作流程,可以尝试例1-2的代码。
【例1-2】 鼠标绘画效果。

 void

setup

 size 400

400

 定义一个400×400px的窗口

 background 200

 设置背景的灰度值为200

8

void

draw

 画一条从前一帧鼠标位置到当前帧鼠标位置的线

 line pmouseX

pmouseY

mouseX

mouseY

在窗口内随意移动鼠标时,将得到如图1-11所示的图案。

图1-11 例1-2任意移动鼠标时的运行结果

在上述代码中,line(pmouseX,

pmouseY,

mouseX,

mouseY)绘制了上一帧鼠标位置

(pmouseX,

pmouseY)与当前帧鼠标位置(mouseX,

mouseY)之间的线条。这样,每次鼠标

移动时,都会在窗口中留下轨迹。
需要注意的是,background命令的使用位置会影响图形的绘制效果。
如果background函数放在setup函数中,背景颜色只会设置一次,图形在这张“纸”上

不断绘制时,所有的痕迹都会被保留下来。
如果按照如下方式更改上面的代码,把background命令放在draw函数中,每帧都会重

置背景颜色,相当于每帧重新铺一层“纸”,只有当前帧的图形会显示出来,代码如例1-3
所示。

【例1-3】 每帧刷新背景。

 void

setup

 size 400

400

void

draw

 background 200
 line pmouseX

pmouseY

mouseX

mouseY

Processing提供了random()函数来生成随机数。例如,random(0,255)会生成一个

9

0~255的随机数,第一个参数如果是0,则可以省略。更改上面的例子,使用random(0,

255)来随机生成背景颜色的红色成分,会得到一个不停变化的背景,因为背景颜色的红色成

分每帧更新一次,代码如例1-4所示。
【例1-4】 动态变化背景。

 void

setup
 size 400

400

void

draw

 background random 255 128 128
 line pmouseX

pmouseY

mouseX

mouseY

在Processing中,有一些内置的事件函数用于处理用户的交互。一个常见的事件是

mousePressed事件,它在鼠标被单击时触发。需要注意的是,这些事件必须与draw函数一

起使用,不能单独存在。
下面是一个使用mousePressed事件的例子,代码如例1-5所示。
【例1-5】

 void

setup

 size 400

400
 background 200

void

draw

 每一帧的绘制代码

void

mousePressed

 background random 255

128

128

在这个例子中,background(200)设置了初始的背景颜色为灰色(灰度值为200)。

mousePressed函数定义了一个事件处理程序,当单击鼠标时,背景颜色的红色成分会变为

一个随机数,而绿色和蓝色成分保持为128。这样,每次单击鼠标时,背景颜色都会改变。
通过这种方式,可以控制交互事件的触发频率,使得程序更加符合预期的行为。这样,

只有在单击鼠标时,背景颜色才会改变,而不是在每一帧都随机变化。

本章将深入讲解编程的核心概念,包括变量、条件语句、循环以及作用域。这些概念构

成了所有编程语言的基础,是编程思维的核心要素。通过学习这些内容,读者将理解如何控

制程序的逻辑流程,并通过编程实现自动化操作。掌握这些基本语法结构,读者将能够创建

更复杂的交互式和动态效果。

2.1 变量的基础知识

2.1.1 数据类型

 在编程中,常见的数据类型有整数类型、浮点类型、布尔类型、字符类型、字符串类型。
(1)

整数类型(int):

用于存储整数,例如,2,1000。
(2)

浮点类型(float):

用于存储小数,例如,3.1415。
(3)

布尔类型(boolean):

用于存储逻辑值,值可以是true或false。例如,布尔变量可

以表示灯的开关状态(开为true,关为false)。
(4)

字符类型(char):

用于存储单个字符,字符用单引号括起来。例如,'a'或 '

'(空格)。
(5)

字符串类型(String):

用于存储字符串,字符串用双引号括起来。例如,"Hello,

World!",注意,虽然字符串类型很常见,但是它并不是基础数据类型。

2.1.2 变量的定义与初始化

在编程中,理解变量是非常重要的,Processing使用的编程语言是Java。掌握变量的使

用不仅对绘制基本图形有帮助,还能为后续更复杂的编程打下坚实的基础。
定义一个变量需要两个步骤。
(1)

声明变量:

通过指定数据类型和变量名来声明变量。例如,int

x和float

y分别声

明了一个整数类型的变量x和一个浮点数类型的变量y。

11

(2)

初始化变量:

给变量赋予初始值。例如,x=0和y=1.2将变量x初始化为0,将变

量y初始化为1.2。
完整的变量定义与初始化语句可以是:

 int

x

=

0
float

y

=

0 0

如果没有显式地初始化,整数和浮点数类型的变量默认会被初始化为0和0.0。
在编程中,等号(=)用于赋值操作,即将右边的值存储到左边的变量中。这与数学中的

等式不同。例如:

 int

x

=

3

 声明整数类型变量x 并初始化为3
x

=

x

+

2

 为x重新赋值为x+2 即3+2

x=x+2在数学上是不成立的,但是在这段代码中,第二行的意思是将x的当前值(3)
加上2,然后将结果(5)存储到变量x中。因此,最终x的值为5。

如果需要比较两个值是否相等,使用双等号(==)。例如:

 x==5 用于判断x和5是否相等

2.1.3 输出变量值

在Processing中,可以使用print和println函数在控制台(Console)中输出变量的值,

println函数会在输出内容后换行,而print函数则不会。学会使用控制台输出某些变量的

值,对于后面运行复杂程序的调试非常有用。
例如:

 int

x

=

3

println "x的值是 "+x

x

=

x

+

2

println "现在x的值是 "+x

程序运行结果如图2-1所示,图中下方黑色部分就是Console。
括号内的内容"x的值是:"

是一个字符串,字符串可以用加号和其他内容连接起来进

行输出。Processing在控制台中的输出内容如图2-1所示。

2.1.4 算术运算符

在编程中,算术运算符是最基本的操作符,用于执行各种数学运算。常见的算术运算符

包括加(+)、减(-)、乘(*)、除(/),以及取余运算符(%)用于获得余数。下面通过一个简

单的例子来说明这些运算符的使用,代码如例2-1所示。
【例2-1】 使用算术运算符。

 void

setup

 定义变量

 int

a

=

10

12

图2-1 Processing在控制台中输出内容

 int

b

=

3

 加法

 int

sum

=

a

+

b
 println "加法

"

+

a

+

"

+

"

+

b

+

"

=

"

+

sum

 减法

 int

difference

=

a

-

b
 println "减法

"

+

a

+

"

-

"

+

b

+

"

=

"

+

difference

 乘法

 int

product

=

a

*

b
 println "乘法

"

+

a

+

"

*

"

+

b

+

"

=

"

+

product

 除法

 float

quotient

=

 float a

b

 将a转换为浮点数以获得精确结果

 println "除法

"

+

a

+

"

"

+

b

+

"

=

"

+

quotient

 取余

 int

remainder

=

a

%

b

13

 println "取余

"

+

a

+

"

%

"

+

b

+

"

=

"

+

remainder

void

draw

控制台中输出的结果如图2-2所示。

图2-2 控制台中输出算术运算结果

这里需要注意的是除法的使用,如果a、b都是int类型,进行除法后的结果还是int类

型,会取整数部分,得到的结果是3。如果需要得到精确的结果,可以用float(a)命令,将a
强制转换成浮点型,参与运算的两个数中有任意一个浮点型,得到的结果都为浮点型,这样

可以得到精确的结果。
通过下面的例子,可以复习所学的内容,代码如例2-2所示。这个例子将创建一个600

×600px的窗口,并在其中绘制随机大小、颜色和位置的矩形。如果不更新背景颜色,将在

窗口中累加生成许多矩形,呈现出一种科技感。读者也可以根据自己的设计和想法,在此基

础上进行创作。
【例2-2】 绘制随机矩形。

 float

x=0
float

y=0

void

setup
 size 600 600
 background #0B5998
 noFill

 去除填充色

void

draw
 x=random 0 width

 x坐标在0到窗口宽度之间

 y=random 0 height

 y坐标在0到窗口高度之间

 stroke 100 random 0 255 160

 设置随机颜色的边框

 矩形宽度在10到60之间 高度在10到80之间

 rect x y

random 10 60 random 10 80

运行结果如图2-3所示。

14

图2-3 例2-2随机生成矩形运行结果

2.2 条件语句

2.2.1 条件语句的语法规则

 条件语句是一个非常重要的概念,它能够帮助控制程序的逻辑流。需要了解的第一个

逻辑语句的关键字是if,后面跟随一个条件表达式。当条件表达式为真时,执行if语句块中

的内容;

否则,不执行。
这个例子中先随机生成一个GPA的值,范围为0~4,然后根据GPA的值来决定是否

录取,代码如例2-3所示。
【例2-3】 使用if语句。

 float

GPA

=

random 0

4

 生成一个0~4的随机数

println "GPA

"

+

GPA

 打印GPA值

if

 GPA

2 0

 println "恭喜 你被录取了 "

println "谢谢"

如果GPA>2.0,则打印“恭喜,你被录取了!”,无论是否满足if里面的条件,后面的“谢

15

谢”都会被打印。if语句的逻辑如图2-4所示。

图2-4 if语句的逻辑

另外一种逻辑语句是二选一的if-else语句。例如,判断GPA是否大于或等于2.0,如
果是,则打印“恭喜,你被录取了!”;

否则,打印“很遗憾,你没有被录取。”,代码如例2-4
所示。

【例2-4】 使用if-else语句。

 float

GPA

=

random 0

4

 生成一个0~4的随机数

println "GPA

"

+

GPA

 打印GPA值

if

 GPA

=

2 0

 println "恭喜 你被录取了 "

else

 println "很遗憾 你没有被录取 "

if-else语句的逻辑如图2-5所示。

图2-5 if-else语句逻辑

现在,对之前的随机矩形程序进行优化,使其在特定条件下绘制不同的形状,代码如

例2-5所示。
【例2-5】 使用if-else语句绘图。

 float

x=0
float

y=0

void

setup
 size 600 600
 background 100 120 160
 noFill

 去除填充色

16

void

draw

 x=random 0 width

 x坐标在0到窗口宽度之间

 y=random 0 height

 y坐标在0到窗口高度之间

 if x 300
 stroke 255 255 0

 如果x坐标小于300 边框设置为黄色

 else
 stroke 100 random 0 255 160

 否则 设置随机颜色的边框

 矩形宽度在10到60之间 高度在10到80之间

 rect x y

random 10 60 random 10 80

得到的结果如图2-6所示,左边的图形都为黄色,右边为随机颜色。

图2-6 例2-5运行结果,左边为黄色矩形,右边为随机颜色

2.2.2 逻辑运算符

在条件判断中,还可以使用逻辑运算符来组合多个条件。

•

==表示等于。

•

!=表示不等于。

•

表示小于。

17

•

=表示小于或等于。

•

表示大于。

•

=表示大于或等于。

•

&&表示与(AND)。

•

||表示或(OR)。

•

! 表示取反。

&&的意思是,同时满足这个符号前后两个条件。||的意思是,满足前后两个条件中

的一个即可。
通过使用这些逻辑运算符,可以实现更加复杂和精确的条件判断,从而更好地控制程序

的执行流程。例如,对上面的例子稍做更改,代码如例2-6所示。
【例2-6】 使用逻辑运算符绘图。

 float

x=0
float

y=0
void

setup
 size 600 600
 background 100 120 160
 noFill

 去除填充色

void

draw

 x=random 0 width

 x坐标在0到窗口宽度之间

 y=random 0 height

 y坐标在0到窗口高度之间

 stroke 100 random 0 255 160

 设置随机颜色的边框

 if x 300&&y 300 如果x 300并且y 300
 ellipse x y 30 30

 绘制椭圆

 else 否则 即在其他部分

 rect x y

random 10 60 random 10 80

 绘制矩形

运行结果如图2-7所示,如果把上面的条件改成if(x<300||y<300),请读者思考会在

哪个部分绘制圆形,在哪个部分绘制矩形?
在编程中,逻辑运算符!

表示取反操作。它将表达式的结果取反。例如,如果条件是

x<300,在前面加上!变为!(x 300),即表示x不小于300,也就是x =300。
请读者尝试,把上面例子中的条件改为if(!(x 300)),将获得怎样的结果呢?

请读者看例2-7所示代码,预测会输出怎样的结果。
【例2-7】 输出成绩等级。

 int

percent

=

random 50

100

if

 percent

=90

 println "你得到了A "

18

图2-7 例2-6运行结果

if

 percent

=80

 println "你得到了B "

if

 percent

=70

 println "

你得到了C "

if

 percent

=60

 println "你得到了D "

if

 percent

60

 println "你得到了F "

由于代码是从上到下顺序执行的,这个代码的问题在于,每个

if

语句都会被单独检查,
导致当

percent

满足多个条件时,会打印多条信息。例如,如果

percent

是

95,那么它既大

于

90,又大于

80,还大于

70

和

60。因此,所有符合条件的

println

语句都会执行,打印出多

个成绩。
要解决这个问题,可以使用else

if

语句,这样一旦满足某个条件后,其余的条件就不会

被检查了。修正后的代码如例2-8所示。

19

【例2-8】 正确地输出成绩等级。

 int

percent

=

random 50 100
if

 percent

=90

 println "You

got

an

A "

else

if

 percent

=80

 如果不满足percent

=90

println "You

got

a

B "
 如果不满足percent

=90也不满足percent

=80

else

if

 percent

=70

 println "You

got

a

C "

else

if

 percent

=60

 println "You

got

a

D "

else

 println "You

got

an

F "

下面通过一个例子来复习上面的内容,代码如例2-9所示。
【例2-9】

 int

x

 声明变量x
void

setup
 size 600 400
 x=40

 x初始化为40

void

draw
 background 255
 fill 255 0 0
 在 x 200 这个位置画一个40×40px的小球

 ellipse x 200 40 40

 x=x+2

 x的值每帧增加2 视觉上 小球有一种向右移动的效果

那么,该如何让小球停下呢? 可以使用布尔型变量,通过这个变量true和false的变化

来控制,代码如例2-10所示。
【例2-10】 移动的小球。

 int

x
 定义一个布尔变量

run 表示小球是否运动 初始值为

true
boolean

run=true
void

setup
 size 600 400
 x=40

void

draw
 background 255
 fill 255 0 0
 ellipse x 200 40 40

20

 if run==true

 如果run为true时

 x=x+2

声明一个布尔型的变量run,初始化为true,添加条件,如果run为true时,让小球移

动;

否则,不执行x=x+2操作,即小球不移动。如果把run初始化为false,则小球不移动。
那么,是否可以用鼠标控制小球的移动呢? 代码如例2-11所示。
【例2-11】 通过鼠标控制小球的移动。

 定义一个整数变量

x 表示小球的水平位置

int

x

 定义一个布尔变量

run 表示小球是否移动 初始值为

true

boolean

run

=

true

void

setup

 size 600 400

 设置画布大小为

600×400px

 x

=

40

 初始化小球的水平位置为

40

void

draw

 background 255

 设置背景颜色为白色

 fill 255

0

0

 设置填充颜色为红色

 ellipse x

200

40

40

 if

 run

==

true

 如果

run

为

true 小球移动

 x

=

x

+

2

 小球的水平位置每帧增加

2

void

mousePressed

 if

 run

==

true

 如果

run

为

true

 run

=

false

 将

run

设置为

false 小球停止移动

else

 如果

run

为

false

 run

=

true

 将

run

设置为

true 小球开始移动

在mousePressed()函数中,通过鼠标单击切换run的值,如果当前为true,则重置为

false,如果当前为false,则重置为true,实现控制小球的运动或停止。

mousePressed()函数内部,也可以简写成run=!run,表示将run的值从true切换为

false,或从false切换为true。
运行结果如图2-8所示。

练习2.1:

随机产生一个10~40的BMI指数。如果BMI指数小于18.5,则打印“体重过轻”;

如

果介于18.5和25,则打印“体重正常”;

如果介于25和30,则打印“超重”;

如果大于35,则
打印“肥胖”。

