前 言
《Python机器学习和图像处理实战 面部识别、目标检测和模式识别》的目标是使读者深入了解图像处理的基础知识、图像处理的不同方法和算法、多种Python库的应用和实时用例的机器学习实现。
《Python机器学习和图像处理实战 面部识别、目标检测和模式识别》首先讨论不同操作系统下的环境设置,介绍图像处理的基本术语,并探究有助于算法应用的Python概念。然后,深入讨论图像处理的不同算法和它们的实际实现;后者使用了Python下的两种代码库——Scikit Image和OpenCV。接着,《Python机器学习和图像处理实战 面部识别、目标检测和模式识别》介绍用于图像处理与分类的机器学习和深度学习的高级方法,解释具体图像应用中的Adaboost、XGBoost、卷积神经网络等概念。最后,《Python机器学习和图像处理实战 面部识别、目标检测和模式识别》描述了实时建模和部署模型的过程。
书中所有的概念都用现实场景来解释。阅读完《Python机器学习和图像处理实战 面部识别、目标检测和模式识别》,读者应该能够应用图像处理技术并通过训练机器学习模型来满足定制化的需求。