SOLVING PROBLEMS BY
SEARCHING

PROBLEM-SOLVING
AGENT

In which we see how an agent can find a sequence of actions that achieves its
goals when no single action will do.

The simplest agents discussed in Chapter 2 were the reflex agents, which base their actions on
a direct mapping from states to actions. Such agents cannot operate well in environments for
which this mapping would be too large to store and would take too long to learn. Goal-based
agents, on the other hand, consider future actions and the desirability of their outcomes.

This chapter describes one kind of goal-based agent called a problem-solving agent.
Problem-solving agents use atomic representations, as described in Section 2.4.7—that is,
states of the world are considered as wholes, with no internal structure visible to the problem-
solving algorithms. Goal-based agents that use more advanced factored or structured rep-
resentations are usually called planning agents and are discussed in Chapters 7 and 10.

Our discussion of problem solving begins with precise definitions of problems and their
solutions and give several examples to illustrate these definitions. We then describe several
general-purpose search algorithms that can be used to solve these problems. We will see
several uninformed search algorithms—algorithms that are given no information about the
problem other than its definition. Although some of these algorithms can solve any solvable
problem, none of them can do so efficiently. Informed search algorithms, on the other hand,
can do quite well given some guidance on where to look for solutions.

In this chapter, we limit ourselves to the simplest kind of task environment, for which
the solution to a problem is always a fixed sequence of actions. The more general case—where
the agent’s future actions may vary depending on future percepts—is handled in Chapter 4.

This chapter uses the concepts of asymptotic complexity (that is, O() notation) and
NP-completeness. Readers unfamiliar with these concepts should consult Appendix A.

3.1 PROBLEM-SOLVING AGENTS

Intelligent agents are supposed to maximize their performance measure. As we mentioned
in Chapter 2, achieving this is sometimes simplified if the agent can adopt a goal and aim at
satisfying it. Let us first look at why and how an agent might do this.
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Imagine an agent in the city of Arad, Romania, enjoying a touring holiday. The agent’s
performance measure contains many factors: it wants to improve its suntan, improve its Ro-
manian, take in the sights, enjoy the nightlife (such as it is), avoid hangovers, and so on. The
decision problem is a complex one involving many tradeoffs and careful reading of guide-
books. Now, suppose the agent has a nonrefundable ticket to fly out of Bucharest the follow-
ing day. In that case, it makes sense for the agent to adopt the goal of getting to Bucharest.
Courses of action that don’t reach Bucharest on time can be rejected without further consid-
eration and the agent’s decision problem is greatly simplified. Goals help organize behavior
by limiting the objectives that the agent is trying to achieve and hence the actions it needs

coaLFormuLATIoN  to consider. Goal formulation, based on the current situation and the agent’s performance
measure, is the first step in problem solving.

We will consider a goal to be a set of world states—exactly those states in which the
goal is satisfied. The agent’s task is to find out how to act, now and in the future, so that it
reaches a goal state. Before it can do this, it needs to decide (or we need to decide on its
behalf) what sorts of actions and states it should consider. If it were to consider actions at
the level of “move the left foot forward an inch” or “turn the steering wheel one degree left,”
the agent would probably never find its way out of the parking lot, let alone to Bucharest,
because at that level of detail there is too much uncertainty in the world and there would be

P IO too many steps in a solution. Problem formulation is the process of deciding what actions
and states to consider, given a goal. We discuss this process in more detail later. For now, let
us assume that the agent will consider actions at the level of driving from one major town to
another. Each state therefore corresponds to being in a particular town.

Our agent has now adopted the goal of driving to Bucharest and is considering where
to go from Arad. Three roads lead out of Arad, one toward Sibiu, one to Timisoara, and one
to Zerind. None of these achieves the goal, so unless the agent is familiar with the geography
of Romania, it will not know which road to follow.! In other words, the agent will not know
which of its possible actions is best, because it does not yet know enough about the state
that results from taking each action. If the agent has no additional information—i.e., if the
environment is unknown in the sense defined in Section 2.3—then it is has no choice but to
try one of the actions at random. This sad situation is discussed in Chapter 4.

But suppose the agent has a map of Romania. The point of a map is to provide the
agent with information about the states it might get itself into and the actions it can take. The
agent can use this information to consider subsequent stages of a hypothetical journey via
each of the three towns, trying to find a journey that eventually gets to Bucharest. Once it has
found a path on the map from Arad to Bucharest, it can achieve its goal by carrying out the
driving actions that correspond to the legs of the journey. In general, an agent with several
immediate options of unknown value can decide what to do by first examining future actions
that eventually lead to states of known value.

To be more specific about what we mean by “examining future actions,” we have to
be more specific about properties of the environment, as defined in Section 2.3. For now,

1 We are assuming that most readers are in the same position and can easily imagine themselves to be as clueless
as our agent. We apologize to Romanian readers who are unable to take advantage of this pedagogical device.
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we assume that the environment is observable, so the agent always knows the current state.
For the agent driving in Romania, it’s reasonable to suppose that each city on the map has a
sign indicating its presence to arriving drivers. We also assume the environment is discrete,
so at any given state there are only finitely many actions to choose from. This is true for
navigating in Romania because each city is connected to a small number of other cities. We
will assume the environment is known, so the agent knows which states are reached by each
action. (Having an accurate map suffices to meet this condition for navigation problems.)
Finally, we assume that the environment is deterministic, so each action has exactly one
outcome. Under ideal conditions, this is true for the agent in Romania—it means that if it
chooses to drive from Arad to Sibiu, it does end up in Sibiu. Of course, conditions are not
always ideal, as we show in Chapter 4.

Under these assumptions, the solution to any problem is a fixed sequence of actions.
“Of course!” one might say, “What else could it be?” Well, in general it could be a branching
strategy that recommends different actions in the future depending on what percepts arrive.
For example, under less than ideal conditions, the agent might plan to drive from Arad to
Sibiu and then to Rimnicu Vilcea but may also need to have a contingency plan in case it
arrives by accident in Zerind instead of Sibiu. Fortunately, if the agent knows the initial state
and the environment is known and deterministic, it knows exactly where it will be after the
first action and what it will perceive. Since only one percept is possible after the first action,
the solution can specify only one possible second action, and so on.

The process of looking for a sequence of actions that reaches the goal is called search.
A search algorithm takes a problem as input and returns a solution in the form of an action
sequence. Once a solution is found, the actions it recommends can be carried out. This
is called the execution phase. Thus, we have a simple “formulate, search, execute” design
for the agent, as shown in Figure 3.1. After formulating a goal and a problem to solve,
the agent calls a search procedure to solve it. It then uses the solution to guide its actions,
doing whatever the solution recommends as the next thing to do—typically, the first action of
the sequence—and then removing that step from the sequence. Once the solution has been
executed, the agent will formulate a new goal.

Notice that while the agent is executing the solution sequence it ignores its percepts
when choosing an action because it knows in advance what they will be. An agent that
carries out its plans with its eyes closed, so to speak, must be quite certain of what is going
on. Control theorists call this an open-loop system, because ignoring the percepts breaks the
loop between agent and environment.

We first describe the process of problem formulation, and then devote the bulk of the
chapter to various algorithms for the SEARCH function. We do not discuss the workings of
the UPDATE-STATE and FORMULATE-GOAL functions further in this chapter.

3.1.1 Well-defined problems and solutions

A problem can be defined formally by five components:

¢ The initial state that the agent starts in. For example, the initial state for our agent in
Romania might be described as In(Arad).
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function SIMPLE-PROBLEM-SOLVING-AGENT( percept) returns an action
persistent: seq, an action sequence, initially empty
state, some description of the current world state
goal, a goal, initially null
problem, a problem formulation

state «— UPDATE-STATE(state, percept)
if seq is empty then
goal « FORMULATE-GOAL(state)
problem «— FORMULATE-PROBLEM(state, goal)
seq «— SEARCH( problem)
if seq = failure then return a null action
action — FIRST(seq)
seq +— REST(seq)
return action

Figure 3.1 A simple problem-solving agent. It first formulates a goal and a problem,
searches for a sequence of actions that would solve the problem, and then executes the actions
one at a time. When this is complete, it formulates another goal and starts over.

e A description of the possible actions available to the agent. Given a particular state s,
ACTIONS(s) returns the set of actions that can be executed in s. We say that each of
these actions is applicable in s. For example, from the state In(Arad), the applicable
actions are { Go(Sibiu), Go( Timisoara), Go(Zerind)}.

e A description of what each action does; the formal name for this is the transition
model, specified by a function RESULT(s, a) that returns the state that results from
doing action a in state s. We also use the term successor to refer to any state reachable
from a given state by a single action.? For example, we have

RESULT(In(Arad), Go(Zerind)) = In(Zerind) .

Together, the initial state, actions, and transition model implicitly define the state space
of the problem—the set of all states reachable from the initial state by any sequence
of actions. The state space forms a directed network or graph in which the nodes
are states and the links between nodes are actions. (The map of Romania shown in
Figure 3.2 can be interpreted as a state-space graph if we view each road as standing
for two driving actions, one in each direction.) A path in the state space is a sequence
of states connected by a sequence of actions.

e The goal test, which determines whether a given state is a goal state. Sometimes there
is an explicit set of possible goal states, and the test simply checks whether the given
state is one of them. The agent’s goal in Romania is the singleton set { In(Bucharest)}.

2 Many treatments of problem solving, including previous editions of this book, use a successor function, which
returns the set of all successors, instead of separate ACTIONS and RESULT functions. The successor function
makes it difficult to describe an agent that knows what actions it can try but not what they achieve. Also, note
some author use RESULT(a, s) instead of RESULT(s, a), and some use DO instead of RESULT.
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Figure 3.2 A simplified road map of part of Romania.

Sometimes the goal is specified by an abstract property rather than an explicitly enumer-
ated set of states. For example, in chess, the goal is to reach a state called “checkmate,”
where the opponent’s king is under attack and can’t escape.

e A path cost function that assigns a numeric cost to each path. The problem-solving
agent chooses a cost function that reflects its own performance measure. For the agent
trying to get to Bucharest, time is of the essence, so the cost of a path might be its length
in kilometers. In this chapter, we assume that the cost of a path can be described as the
sum of the costs of the individual actions along the path.> The step cost of taking action
a in state s to reach state s’ is denoted by c¢(s, a, s’). The step costs for Romania are
shown in Figure 3.2 as route distances. We assume that step costs are nonnegative.*

The preceding elements define a problem and can be gathered into a single data structure
that is given as input to a problem-solving algorithm. A solution to a problem is an action
sequence that leads from the initial state to a goal state. Solution quality is measured by the
path cost function, and an optimal solution has the lowest path cost among all solutions.

3.1.2 Formulating problems

In the preceding section we proposed a formulation of the problem of getting to Bucharest in
terms of the initial state, actions, transition model, goal test, and path cost. This formulation
seems reasonable, but it is still a model—an abstract mathematical description—and not the

3 This assumption is algorithmically convenient but also theoretically justifiable—see page 649 in Chapter 17.
4 The implications of negative costs are explored in Exercise 3.8.
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real thing. Compare the simple state description we have chosen, In(Arad), to an actual cross-
country trip, where the state of the world includes so many things: the traveling companions,
the current radio program, the scenery out of the window, the proximity of law enforcement
officers, the distance to the next rest stop, the condition of the road, the weather, and so on.
All these considerations are left out of our state descriptions because they are irrelevant to the
problem of finding a route to Bucharest. The process of removing detail from a representation
is called abstraction.

In addition to abstracting the state description, we must abstract the actions themselves.
A driving action has many effects. Besides changing the location of the vehicle and its oc-
cupants, it takes up time, consumes fuel, generates pollution, and changes the agent (as they
say, travel is broadening). Our formulation takes into account only the change in location.
Also, there are many actions that we omit altogether: turning on the radio, looking out of
the window, slowing down for law enforcement officers, and so on. And of course, we don’t
specify actions at the level of “turn steering wheel to the left by one degree.”

Can we be more precise about defining the appropriate level of abstraction? Think of the
abstract states and actions we have chosen as corresponding to large sets of detailed world
states and detailed action sequences. Now consider a solution to the abstract problem: for
example, the path from Arad to Sibiu to Rimnicu Vilcea to Pitesti to Bucharest. This abstract
solution corresponds to a large number of more detailed paths. For example, we could drive
with the radio on between Sibiu and Rimnicu Vilcea, and then switch it off for the rest of
the trip. The abstraction is valid if we can expand any abstract solution into a solution in the
more detailed world; a sufficient condition is that for every detailed state that is “in Arad,”
there is a detailed path to some state that is “in Sibiu,” and so on.> The abstraction is useful
if carrying out each of the actions in the solution is easier than the original problem; in this
case they are easy enough that they can be carried out without further search or planning by
an average driving agent. The choice of a good abstraction thus involves removing as much
detail as possible while retaining validity and ensuring that the abstract actions are easy to
carry out. Were it not for the ability to construct useful abstractions, intelligent agents would
be completely swamped by the real world.

3.2 EXAMPLE PROBLEMS

TOY PROBLEM

REAL-WORLD
PROBLEM

The problem-solving approach has been applied to a vast array of task environments. We
list some of the best known here, distinguishing between foy and real-world problems. A
toy problem is intended to illustrate or exercise various problem-solving methods. It can be
given a concise, exact description and hence is usable by different researchers to compare the
performance of algorithms. A real-world problem is one whose solutions people actually
care about. Such problems tend not to have a single agreed-upon description, but we can give
the general flavor of their formulations.

5 See Section 11.2 for a more complete set of definitions and algorithms.
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Figure 3.3  The state space for the vacuum world. Links denote actions: L = Left, R =
Right, S = Suck.

3.2.1 Toy problems

The

first example we examine is the vacuum world first introduced in Chapter 2. (See

Figure 2.2.) This can be formulated as a problem as follows:

States: The state is determined by both the agent location and the dirt locations. The
agent is in one of two locations, each of which might or might not contain dirt. Thus,
there are 2 x 22 = 8 possible world states. A larger environment with n locations has
n - 2" states.

Initial state: Any state can be designated as the initial state.

Actions: In this simple environment, each state has just three actions: Left, Right, and
Suck. Larger environments might also include Up and Down.

Transition model: The actions have their expected effects, except that moving Left in
the leftmost square, moving Right in the rightmost square, and Sucking in a clean square
have no effect. The complete state space is shown in Figure 3.3.

Goal test: This checks whether all the squares are clean.
Path cost: Each step costs 1, so the path cost is the number of steps in the path.

Compared with the real world, this toy problem has discrete locations, discrete dirt, reliable
cleaning, and it never gets any dirtier. Chapter 4 relaxes some of these assumptions.

The 8-puzzle, an instance of which is shown in Figure 3.4, consists of a 3 x3 board with

eight numbered tiles and a blank space. A tile adjacent to the blank space can slide into the
space. The object is to reach a specified goal state, such as the one shown on the right of the
figure. The standard formulation is as follows:
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Figure 3.4 A typical instance of the 8-puzzle.

e States: A state description specifies the location of each of the eight tiles and the blank
in one of the nine squares.

o Initial state: Any state can be designated as the initial state. Note that any given goal
can be reached from exactly half of the possible initial states (Exercise 3.4).

e Actions: The simplest formulation defines the actions as movements of the blank space
Left, Right, Up, or Down. Different subsets of these are possible depending on where
the blank is.

¢ Transition model: Given a state and action, this returns the resulting state; for example,
if we apply Left to the start state in Figure 3.4, the resulting state has the 5 and the blank
switched.

e Goal test: This checks whether the state matches the goal configuration shown in Fig-
ure 3.4. (Other goal configurations are possible.)

e Path cost: Each step costs 1, so the path cost is the number of steps in the path.

What abstractions have we included here? The actions are abstracted to their beginning and
final states, ignoring the intermediate locations where the block is sliding. We have abstracted
away actions such as shaking the board when pieces get stuck and ruled out extracting the
pieces with a knife and putting them back again. We are left with a description of the rules of
the puzzle, avoiding all the details of physical manipulations.

The 8-puzzle belongs to the family of sliding-block puzzles, which are often used as
test problems for new search algorithms in Al This family is known to be NP-complete,
so one does not expect to find methods significantly better in the worst case than the search
algorithms described in this chapter and the next. The 8-puzzle has 9!/2 = 181, 440 reachable
states and is easily solved. The 15-puzzle (on a 4 x 4 board) has around 1.3 trillion states, and
random instances can be solved optimally in a few milliseconds by the best search algorithms.
The 24-puzzle (on a 5 x 5 board) has around 10%° states, and random instances take several
hours to solve optimally.

The goal of the 8-queens problem is to place eight queens on a chessboard such that
no queen attacks any other. (A queen attacks any piece in the same row, column or diago-
nal.) Figure 3.5 shows an attempted solution that fails: the queen in the rightmost column is
attacked by the queen at the top left.
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Figure 3.5  Almost a solution to the 8-queens problem. (Solution is left as an exercise.)

Although efficient special-purpose algorithms exist for this problem and for the whole
n-queens family, it remains a useful test problem for search algorithms. There are two main
kinds of formulation. An incremental formulation involves operators that augment the state
description, starting with an empty state; for the 8-queens problem, this means that each
action adds a queen to the state. A complete-state formulation starts with all 8§ queens on
the board and moves them around. In either case, the path cost is of no interest because only
the final state counts. The first incremental formulation one might try is the following:

States: Any arrangement of 0 to 8 queens on the board is a state.

Initial state: No queens on the board.

Actions: Add a queen to any empty square.
o Transition model: Returns the board with a queen added to the specified square.
Goal test: 8 queens are on the board, none attacked.

In this formulation, we have 64 - 63 - - - 57 = 1.8 x 104 possible sequences to investigate. A
better formulation would prohibit placing a queen in any square that is already attacked:

o States: All possible arrangements of n queens (0 < n < 8), one per column in the
leftmost n columns, with no queen attacking another.

e Actions: Add a queen to any square in the leftmost empty column such that it is not
attacked by any other queen.

This formulation reduces the 8-queens state space from 1.8 x 104 to just 2,057, and solutions
are easy to find. On the other hand, for 100 queens the reduction is from roughly 104% states
to about 1052 states (Exercise 3.5)—a big improvement, but not enough to make the problem
tractable. Section 4.1 describes the complete-state formulation, and Chapter 6 gives a simple
algorithm that solves even the million-queens problem with ease.
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ROUTE-FINDING
PROBLEM

Our final toy problem was devised by Donald Knuth (1964) and illustrates how infinite
state spaces can arise. Knuth conjectured that, starting with the number 4, a sequence of fac-
torial, square root, and floor operations will reach any desired positive integer. For example,
we can reach 5 from 4 as follows:

[ (4!)!J =5,
The problem definition is very simple:

e States: Positive numbers.

¢ Initial state: 4.

e Actions: Apply factorial, square root, or floor operation (factorial for integers only).
¢ Transition model: As given by the mathematical definitions of the operations.

e Goal test: State is the desired positive integer.

To our knowledge there is no bound on how large a number might be constructed in the pro-
cess of reaching a given target—for example, the number 620,448,401,733,239,439,360,000
is generated in the expression for 5—so the state space for this problem is infinite. Such
state spaces arise frequently in tasks involving the generation of mathematical expressions,
circuits, proofs, programs, and other recursively defined objects.

3.2.2 Real-world problems

We have already seen how the route-finding problem is defined in terms of specified loca-
tions and transitions along links between them. Route-finding algorithms are used in a variety
of applications. Some, such as Web sites and in-car systems that provide driving directions,
are relatively straightforward extensions of the Romania example. Others, such as routing
video streams in computer networks, military operations planning, and airline travel-planning
systems, involve much more complex specifications. Consider the airline travel problems that
must be solved by a travel-planning Web site:

e States: Each state obviously includes a location (e.g., an airport) and the current time.
Furthermore, because the cost of an action (a flight segment) may depend on previous
segments, their fare bases, and their status as domestic or international, the state must
record extra information about these “historical” aspects.

Initial state: This is specified by the user’s query.

Actions: Take any flight from the current location, in any seat class, leaving after the
current time, leaving enough time for within-airport transfer if needed.

Transition model: The state resulting from taking a flight will have the flight’s desti-
nation as the current location and the flight’s arrival time as the current time.

Goal test: Are we at the final destination specified by the user?

o Path cost: This depends on monetary cost, waiting time, flight time, customs and im-
migration procedures, seat quality, time of day, type of airplane, frequent-flyer mileage
awards, and so on.



