primitive java

Ile primary focus of this book is problem-solving techniques that allow
the construction of sophisticated, time-efficient programs. Nearly all of the
material discussed is applicable in any programming language. Some would
argue that a broad pseudocode description of these techniques could suffice to
demonstrate concepts. However, we believe that working with live code is
vitally important.

There is no shortage of programming languages available. This text uses
Java, which is popular both academically and commercially. In the first four
chapters, we discuss the features of Java that are used throughout the book.
Unused features and technicalities are not covered. Those looking for deeper
Java information will find it in the many Java books that are available.

We begin by discussing the part of the language that mirrors a 1970s pro-
gramming language such as Pascal or C. This includes primitive types, basic oper-
ations, conditional and looping constructs, and the Java equivalent of functions.

In this chapter, we will see

B Some of the basics of Java, including simple lexical elements

W The Java primitive types, including some of the operations that
primitive-typed variables can perform

chapter 1

primitive java

B How conditional statements and loop constructs are implemented in
Java

B An introduction to the static method—the Java equivalent of the
function and procedure that is used in non-object-oriented languages

1.1 the general environment

How are Java application programs entered, compiled, and run? The answer,
of course, depends on the particular platform that hosts the Java compiler.

Java source code resides in files whose names end with the .java suffix.
The local compiler, javac, compiles the program and generates .class files,
which contain bytecode. Java bytecodes represent the portable intermediate
language that is interpreted by running the Java interpreter, java. The inter-
preter is also known as the Virtual Machine.

For Java programs, input can come from one of many places:

W The terminal, whose input is denoted as standard input

W Additional parameters in the invocation of the Virtual Machine—
command-line arguments

® A GUI component
m Afile

Command-line arguments are particularly important for specifying pro-
gram options. They are discussed in Section 2.4.5. Java provides mechanisms
to read and write files. This is discussed briefly in Section 2.6.3 and in more
detail in Section 4.5.3 as an example of the decorator pattern. Many operat-
ing systems provide an alternative known as file redirection, in which the
operating system arranges to take input from (or send output to) a file in a
manner that is transparent to the running program. On Unix (and also from an
MS/DOS window), for instance, the command

java Program < inputfile > outputfile

automatically arranges things so that any terminal reads are redirected to
come from inputfile and terminal writes are redirected to go to outputfile.

1.2 the first program 5

1.2 the first program

Let us begin by examining the simple Java program shown in Figure 1.1. This
program prints a short phrase to the terminal. Note the line numbers shown on the
left of the code are not part of the program. They are supplied for easy reference.

Place the program in the source file FirstProgram.java and then compile
and run it. Note that the name of the source file must match the name of the
class (shown on line 4), including case conventions. If you are using the JDK,
the commands are!

javac FirstProgram.java
java FirstProgram

1.21 comments

Java has three forms of comments. The first form, which is inherited from C,
begins with the token /* and ends with */. Here is an example:

/* This is a
two-Tine comment */

Comments do not nest.

The second form, which is inherited from C++, begins with the token //.
There is no ending token. Rather, the comment extends to the end of the line.
This is shown on lines 1 and 2 in Figure 1.1.

The third form begins with /** instead of /*. This form can be used to
provide information to the javadoc utility, which will generate documentation
from comments. This form is discussed in Section 3.3.

1 // First program figure 1.1

2 // MW, 5/1/10 A simple first program
zat public class FirstProgram

2 { public static void main(String [] args)

; { System.out.printin("Is there anybody out there?");

g }

1. If you are using Sun’s JDK, javac and java are used directly. Otherwise, in a typical interac-
tive development environment (IDE), such as Netbeans or Eclipse these commands are
executed behind the scenes on your behalf.

chapter 1

primitive java

Comments exist to make code easier for humans to read. These humans
include other programmers who may have to modify or use your code, as well
as yourself. A well-commented program is a sign of a good programmer.

1.2.2 main

A Java program consists of a collection of interacting classes, which contain
methods. The Java equivalent of the function or procedure is the static
method, which is described in Section 1.6. When any program is run, the spe-
cial static method main is invoked. Line 6 of Figure 1.1 shows that the static
method main is invoked, possibly with command-line arguments. The parame-
ter types of main and the void return type shown are required.

1.2.3 terminal output

The program in Figure 1.1 consists of a single statement, shown on line 8.
printin is the primary output mechanism in Java. Here, a constant string is
placed on the standard output stream System.out by applying a printin
method. Input and output is discussed in more detail in Section 2.6. For now
we mention only that the same syntax is used to perform output for any entity,
whether that entity is an integer, floating point, string, or some other type.

1.3 primitive types

Java defines eight primitive types. It also allows the programmer great flexi-
bility to define new types of objects, called classes. However, primitive types
and user-defined types have important differences in Java. In this section, we
examine the primitive types and the basic operations that can be performed on
them.

1.3.1 the primitive types

Java has eight primitive types, shown in Figure 1.2. The most common is the
integer, which is specified by the keyword int. Unlike with many other lan-
guages, the range of integers is not machine-dependent. Rather, it is the same
in any Java implementation, regardless of the underlying computer architec-
ture. Java also allows entities of types byte, short, and long. These are known
as integral types. Floating-point numbers are represented by the types float
and double. double has more significant digits, so use of it is recommended
over use of float. The char type is used to represent single characters. A char
occupies 16 bits to represent the Unicode standard. The Unicode standard
contains over 30,000 distinct coded characters covering the principal written

1.3 primitive types 7

byte 8-bit integer -1281t0 127

short 16-bit integer ~32,768 to 32,767

int 32-bit integer —2,147,483,648 to 2,147,483,647
Tong 64-bit integer 283102631

float 32-bit floating-point 6 significant digits (1076, 10%8)
double 64-bit floating-point 15 significant digits (10324, 1078)
char Unicode character

boolean Boolean variable false and true

languages. The low end of Unicode is identical to ASCIL. The final primitive
type is boolean, which is either true or false.

1.3.2 constants

Integer constants can be represented in either decimal, octal, or hexadecimal nota-
tion. Octal notation is indicated by a leading 0; hexadecimal is indicated by a lead-
ing 0x or OX. The following are all equivalent ways of representing the integer 37:
37, 045, 0x25. Octal integers are not used in this text. However, we must be aware of
them so that we use leading 0s only when we intend to. We use hexadecimals in
only one place (Section 12.1), and we will revisit them at that point.

A character constant is enclosed with a pair of single quotation marks, as in
'a". Internally, this character sequence is interpreted as a small number. The output
routines later interpret that small number as the corresponding character. A string
constant consists of a sequence of characters enclosed within double quotation
marks, as in "Hel1o". There are some special sequences, known as escape sequences,
that are used (for instance, how does one represent a single quotation mark?). In this
text we use '\n', "\\', '\'', and "\"', which mean, respectively, the newline charac-
ter, backslash character, single quotation mark, and double quotation mark.

1.3.3 declaration and initialization

of primitive types
Any variable, including those of a primitive type, is declared by providing its
name, its type, and optionally, its initial value. The name must be an identifier.

An identifier may consist of any combination of letters, digits, and the under-
score character; it may not start with a digit, however. Reserved words, such

figure 1.2

The eight primitive
types in Java

chapter 1

primitive java

as int, are not allowed. Although it is legal to do so, you should not reuse
identifier names that are already visibly used (for example, do not use main as
the name of an entity).

Java is case-sensitive, meaning that Age and age are different identifiers.
This text uses the following convention for naming variables: All variables
start with a lowercase letter and new words start with an uppercase letter. An
example is the identifier minimumWage.

Here are some examples of declarations:

int num3; // Default initialization
double minimumWage = 4.50; // Standard initialization
int x = 0, numl = 0; // Two entities are declared

int num2 = numl;

A variable should be declared near its first use. As will be shown, the
placement of a declaration determines its scope and meaning.

1.3.4 terminal input and output

Basic formatted terminal I/O is accomplished by nextLine and printin. The
standard input stream is System.in, and the standard output stream is
System.out.

The basic mechanism for formatted I/O uses the String type, which is
discussed in Section 2.3. For output, + combines two Strings. If the second
argument is not a String, a temporary String is created for it if it is a prim-
itive type. These conversions to String can also be defined for objects
(Section 3.4.3). For input, we associate a Scanner object with System.in.
Then a String or a primitive type can be read. A more detailed discussion
of I/0, including a treatment of formatted files, is in Section 2.6.

1.4 basic operators

This section describes some of the operators available in Java. These opera-
tors are used to form expressions. A constant or entity by itself is an expres-
sion, as are combinations of constants and variables with operators. An
expression followed by a semicolon is a simple statement. In Section 1.5, we
examine other types of statements, which introduce additional operators.

1.4 basic operators

1.4.1 assignment operators

A simple Java program that illustrates a few operators is shown in Figure 1.3.
The basic assignment operator is the equals sign. For example, on line 16 the
variable a is assigned the value of the variable ¢ (which at that point is 6). Sub-
sequent changes to the value of c do not affect a. Assignment operators can be
chained, as in z=y=x=0.

Another assignment operator is the +=, whose use is illustrated on line 18
of the figure. The += operator adds the value on the right-hand side (of the +=
operator) to the variable on the left-hand side. Thus, in the figure, c is incre-
mented from its value of 6 before line 18, to a value of 14.

Java provides various other assignment operators, such as -=, *=, and /=,
which alter the variable on the left-hand side of the operator via subtraction,
multiplication, and division, respectively.

1 public class OperatorTest figure 1.3
2 { . . Program that
3 // Program to illustrate basic operators illustrates operators
4 // The output is as follows:

5 // 12 8 6

6 // 686

7 // 6 8 14

8 // 22 8 14

9 // 24 10 33

10

11 public static void main(String [1 args)

12 {

13 inta=12, b =8, ¢ = 6;

14

15 System.out.println(a +" " +b+ " " +c);

16 a=c;

17 System.out.printiIn(a + " "+ b+ " " + c);

18 C += b;

19 System.out.printin(a + " " +b+" " +c);

20 a=b+c;

21 System.out.printin(a+" " +b+" " +¢);

22 a++;

23 ++b;

24 C = a++ + ++b;

25 System.out.printIn(a + " "+b+ " " + ¢);

10

chapter 1

primitive java

1.4.2 binary arithmetic operators

Line 20 in Figure 1.3 illustrates one of the binary arithmetic operators that
are typical of all programming languages: the addition operator (+). The +
operator causes the values of b and ¢ to be added together; b and ¢ remain
unchanged. The resulting value is assigned to a. Other arithmetic operators
typically used in Java are -, *, /, and %, which are used, respectively, for sub-
traction, multiplication, division, and remainder. Integer division returns only
the integral part and discards any remainder.

As is typical, addition and subtraction have the same precedence, and this
precedence is lower than the precedence of the group consisting of the multi-
plication, division, and mod operators; thus 1+2*3 evaluates to 7. All of these
operators associate from left to right (so 3-2-2 evaluates to —1). All operators
have precedence and associativity. The complete table of operators is in
Appendix A.

1.4.3 unary operators

In addition to binary arithmetic operators, which require two operands, Java
provides unary operators, which require only one operand. The most familiar
of these is the unary minus, which evaluates to the negative of its operand.
Thus -x returns the negative of x.

Java also provides the autoincrement operator to add 1 to a variable—
denoted by ++ —and the autodecrement operator to subtract 1 from a variable—
denoted by --. The most benign use of this feature is shown on lines 22 and
23 of Figure 1.3. In both lines, the autoincrement operator ++ adds 1 to the
value of the variable. In Java, however, an operator applied to an expression
yields an expression that has a value. Although it is guaranteed that the vari-
able will be incremented before the execution of the next statement, the
question arises: What is the value of the autoincrement expression if it is
used in a larger expression?

In this case, the placement of the ++ is crucial. The semantics of ++x is
that the value of the expression is the new value of x. This is called the prefix
increment. In contrast, x++ means the value of the expression is the original
value of x. This is called the postfix increment. This feature is shown in line 24
of Figure 1.3. a and b are both incremented by 1, and c is obtained by adding
the original value of a to the incremented value of b.

1.44 type conversions

The type conversion operator is used to generate a temporary entity of a new
type. Consider, for instance,

1.5 conditional statements 11

double quotient;
int x =
inty =

6;
10;
guotient =

X/ // Probably wrong!

The first operation is the division, and since x and y are both integers, the result is
integer division, and we obtain 0. Integer O is then implicitly converted to a double
so that it can be assigned to quotient. But we had intended quotient to be assigned
0.6. The solution is to generate a temporary variable for either x or y so that the
division is performed using the rules for double. This would be done as follows:

quotient = (double) x / vy;

Note that neither x nor y are changed. An unnamed temporary is created, and
its value is used for the division. The type conversion operator has higher pre-
cedence than division does, so x is type-converted and then the division is per-
formed (rather than the conversion coming after the division of two ints being
performed).

1.5 conditional statements

This section examines statements that affect the flow of control: conditional
statements and loops. As a consequence, new operators are introduced.

1.5.1 relational and equality operators

The basic test that we can perform on primitive types is the comparison. This
is done using the equality and inequality operators, as well as the relational
operators (less than, greater than, and so on).

In Java, the equality operators are == and !=. For example,

leftExpr==rightExpr

evaluates to true if TeftExpr and rightExpr are equal; otherwise, it evaluates to
false. Similarly,

leftExpr!=rightExpr

evaluates to true if leftExpr and rightExpr are not equal and to false
otherwise.

The relational operators are <, <=, >, and >=. These have natural meanings
for the built-in types. The relational operators have higher precedence than the
equality operators. Both have lower precedence than the arithmetic operators

12 chapter 1

primitive java

figure 1.4

Resuit of logical
operators

but higher precedence than the assignment operators, so the use of parenthe-
ses is frequently unnecessary. All of these operators associate from left to
right, but this fact is useless: In the expression a<b<6, for example, the first <
generates a boolean and the second is illegal because < is not defined for bool-
eans. The next section describes the correct way to perform this test.

1.5.2 logical operators

Java provides logical operators that are used to simulate the Boolean algebra
concepts of AND, OR, and NOT. These are sometimes known as conjunction,
disjunction, and negation, respectively, whose corresponding operators are &&,
||, and !. The test in the previous section is properly implemented as a<b &&
b<6. The precedence of conjunction and disjunction is sufficiently low that
parentheses are not needed. & has higher precedence than ||, while ! is
grouped with other unary operators (and is thus highest of the three). The
operands and results for the logical operators are boolean. Figure 1.4 shows
the result of applying the logical operators for all possible inputs.

One important rule is that & and || are short-circuit evaluation operations.
Short-circuit evaluation means that if the result can be determined by examining
the first expression, then the second expression is not evaluated. For instance, in

x 1=0& 1/x 1= 3

if x is O, then the first half is false. Automatically the result of the AND must
be false, so the second half is not evaluated. This is a good thing because
division-by-zero would give erroneous behavior. Short-circuit evaluation
allows us to not have to worry about dividing by zero.?

false false false false true
false true false true true
true false false true false
true true

2. There are (extremely) rare cases in which it is preferable to not short-circuit. In such cases,
the & and | operators with boolean arguments guarantee that both arguments are evaluated,
even if the result of the operation can be determined from the first argument.

1.5 conditional statements 13

1.5.3 the if statement

The if statement is the fundamental decision maker. Its basic form is

if(expression)
statement
next statement

If expression evaluates to true, then statement is executed; otherwise, it is
not. When the if statement is completed (without an unhandled error), control
passes to the next statement.

Optionally, we can use an if-else statement, as follows:

if(expression)
statementl
else
statement2
next statement

In this case, if expression evaluates to true, then statementl is executed; oth-
erwise, statement?2 is executed. In either case, control then passes to the next
statement, as in

System.out.print("1/x is ");
if(x 1=0)
System.out.print(1 / x);
else
System.out.print("Undefined");
System.out.printin();

Remember that each of the if and else clauses contains at most one
statement, no matter how you indent. Here are two mistakes:

if(x ==0); // i is null statement (and counts)
System.out.printin("x is zero ");

else
System.out.print("x is ");
System.out.printin(x); // Two statements

The first mistake is the inclusion of the ; at the end of the first if. This
semicolon by itself counts as the null statement; consequently, this frag-
ment won’t compile (the else is no longer associated with an if). Once
that mistake is fixed, we have a logic error: that is, the last line is not part
of the else, even though the indentation suggests it is. To fix this problem,
we have to use a block, in which we enclose a sequence of statements by
a pair of braces:

14

chapter 1

primitive java

if(x==0)

System.out.printin("x is zero");
else
{

System.out.print("x is ");
System.out.printin(x);

The if statement can itself be the target of an if or else clause, as can
other control statements discussed later in this section. In the case of nested
if-else statements, an else matches the innermost dangling if. It may be
necessary to add braces if that is not the intended meaning.

1.5.4 the while statement

Java provides three basic forms of looping: the while statement, for statement,
and do statement. The syntax for the while statement is

while(expression)
statement
next statement

Note that like the if statement, there is no semicolon in the syntax. If one is
present, it will be taken as the null statement.

While expression is true, statement is executed; then expression is reevalu-
ated. If expression is initially false, then statement will never be executed. Gen-
erally, statement does something that can potentially alter the value of expression;
otherwise, the loop could be infinite. When the while loop terminates (nor-
mally), control resumes at the next statement.

1.5.5 the for statement

The while statement is sufficient to express all repetition. Even so, Java
provides two other forms of looping: the for statement and the do statement.
The for statement is used primarily for iteration. Its syntax is

for(initialization; test; update)
statement
next statement

Here, initialization, test, and update are all expressions, and all three are
optional. If test is not provided, it defaults to true. There is no semicolon
after the closing parenthesis.

The for statement is executed by first performing the initialization. Then,
while test is true, the following two actions occur: statement is performed, and

1.5 conditional statements 15

then update is performed. If initialization and update are omitted, then the
for statement behaves exactly like a while statement. The advantage of a for
statement is clarity in that for variables that count (or iterate), the for statement
makes it much easier to see what the range of the counter is. The following frag-
ment prints the first 100 positive integers:

for(int i = 1; i <= 100; i++)
System.out.printin(i);

This fragment illustrates the common technique of declaring a counter in the ini-
tialization portion of the loop. This counter’s scope extends only inside the loop.

Both initialization and update may use a comma to allow multiple expres-
sions. The following fragment illustrates this idiom:

fOI"(i= 0, sum = 0; i <= n; 'i++’ sum += n)
System.out.printin(i + "\t" + sum);

Loops nest in the same way as if statements. For instance, we can find all
pairs of small numbers whose sum equals their product (such as 2 and 2,
whose sum and product are both 4):

for(int i =1; i <= 10; i++)
for(int j = 1; j <= 10; j++)
if(i+j==1%3j)
System.out.printin(i + ", " + J);

As we will see, however, when we nest loops we can easily create programs
whose running times grow quickly.

Java 5 adds an “enhanced” for loop. We discuss this addition in Section
2.4 and Chapter 6.

1.5.6 the do statement

The while statement repeatedly performs a test. If the test is true, it then
executes an embedded statement. However, if the initial test is false, the
embedded statement is never executed. In some cases, however, we would
like to guarantee that the embedded statement is executed at least once. This
is done using the do statement. The do statement is identical to the while
statement, except that the test is performed after the embedded statement.
The syntax is

do

statement
while(expression);
next statement

16 chapter 1 primitive java

Notice that the do statement includes a semicolon. A typical use of the do
statement is shown in the following pseudocode fragment:

do
{

Prompt user;
Read value;
} while(value is no good);

The do statement is by far the least frequently used of the three looping
constructs. However, when we have to do something at least once, and for
some reason a for loop is inappropriate, then the do statement is the method of
choice.

1.5.7 break and continue

The for and while statements provide for termination before the start of a
repeated statement. The do statement allows termination after execution of a
repeated statement. Occasionally, we would like to terminate execution in the
middle of a repeated (compound) statement. The break statement, which is
the keyword break followed by a semicolon, can be used to achieve this.
Typically, an if statement would precede the break, as in

while(...)
{
%%t something)
break;

The break statement exits the innermost loop only (it is also used in conjunc-
tion with the switch statement, described in the next section). If there are several
loops that need exiting, the break will not work, and most likely you have poorly
designed code. Even so, Java provides a labeled break statement. In the labeled
break statement, a loop is labeled, and then a break statement can be applied to the
loop, regardless of how many other loops are nested. Here is an example:

outer:
while(...)
{
while(...)
if(disaster)
break outer; // Go to after outer

}

// Control passes here after outer loop is exited

1.5 conditional statements 17

Occasionally, we want to give up on the current iteration of a loop and go
on to the next iteration. This can be handled by using a continue statement.
Like the break statement, the continue statement includes a semicolon and
applies to the innermost loop only. The following fragment prints the first 100
integers, with the exception of those divisible by 10:

for(int i = 1; 1 <= 100; i++)

if(1% 10 ==0)
continue;
System.out.printin(i);
}

Of course, in this example, there are alternatives to the continue statement. However,
continue is commonly used to avoid complicated 1if-else patterns inside loops.

1.5.8 the switch statement

The switch statement is used to select among several small integer (or character)
values. It consists of an expression and a block. The block contains a sequence of
statements and a collection of labels, which represent possible values of the
expression. All the labels must be distinct compile-time constants. An optional
default label, if present, matches any unrepresented label. If there is no applica-
ble case for the switch expression, the switch statement is over; otherwise, control
passes to the appropriate label and all statements from that point on are executed.
A break statement may be used to force early termination of the switch and is
almost always used to separate logically distinct cases. An example of the typical
structure is shown in Figure 1.5.

159 the conditional operator

The conditional operator ?: is used as a shorthand for simple if-else statements.
The general form is

testExpr ? yesExpr : noExpr

testExpr is evaluated first, followed by either yesExpr or noExpr, producing
the result of the entire expression. yeskxpr is evaluated if testExpr is true;
otherwise, noExpr is evaluated. The precedence of the conditional operator is
just above that of the assignment operators. This allows us to avoid using
parentheses when assigning the result of the conditional operator to a vari-
able. As an example, the minimum of x and y is assigned to minval as follows:

minval = x <=y ? x : y;

18 chapter 1 primitive java

figure 1.5

Layout of a switch
statement

1

2

3

4

5 case '{":
6 // Code to process opening symbols
7 break;

8

9 case ")":

10 case ']':

11 case '}':

12 // Code to process closing symbols
13 break;

14

15 case '\n':

16 // Code to handle newline character
17 break;

18

19 default:

20 // Code to handle other cases

21 break;

1.6 methods

What is known as a function or procedure in other languages is called a method
in Java. A more complete treatment of methods is provided in Chapter 3. This
section presents some of the basics for writing functions, such as main, in a non-
object-oriented manner (as would be encountered in a language such as C)
so that we can write some simple programs.

A method header consists of a name, a (possibly empty) list of parame-
ters, and a return type. The actual code to implement the method, sometimes
called the method body, is formally a block. A method declaration consists of
a header plus the body. An example of a method declaration and a main routine
that uses it is shown in Figure 1.6.

By prefacing each method with the words public static, we can mimic the
C-style global function. Although declaring a method as static is a useful
technique in some instances, it should not be overused, since in general we do
not want to use Java to write “C-style” code. We will discuss the more typical
use of static in Section 3.6.

The method name is an identifier. The parameter list consists of zero or
more formal parameters, each with a specified type. When a method is
called, the actual arguments are sent into the formal parameters using normal

1.6 methods 19

ublic class MinTest figure 1.6

1p

2 { Illustration of method
3 public static void main(String [] args) declaration and calls
4 {

5 int a = 3;

6 intb =7;

7

8 System.out.printin(min(a, b));

9 }

10

11 // Method declaration

12 public static int min(int x, inty)

13 {

14 return x <y ? x :y;

15 }

16 }

assignment. This means primitive types are passed using call-by-value
parameter passing only. The actual arguments cannot be altered by the
function. As with most modern programming languages, method declara-
tions may be arranged in any order.

The return statement is used to return a value to the caller. If the return
type is void, then no value is returned, and return; should be used.

1.6.1 overloading of method names

Suppose we need to write a routine that returns the maximum of three ints.
A reasonable method header would be

int max(int a, int b, int ¢)

In some languages, this may be unacceptable if max is already declared. For
instance, we may also have

int max(int a, int b)

Java allows the overloading of method names. This means that several
methods may have the same name and be declared in the same class scope as
long as their signatures (that is, their parameter list types) differ. When a call
to max is made, the compiler can deduce which of the intended meanings
should be applied based on the actual argument types. Two signatures may
have the same number of parameters, as long as at least one of the parameter
list types differs.

20 chapter 1 primitive java

Note that the return type is not included in the signature. This means it is
illegal to have two methods in the same class scope whose only difference is
the return type. Methods in different class scopes may have the same names,
signatures, and even return types; this is discussed in Chapter 3.

1.6.2 storage classes

Entities that are declared inside the body of a method are local variables and
can be accessed by name only within the method body. These entities are
created when the method body is executed and disappear when the method
body terminates.

A variable declared outside the body of a method is global to the class. It
is similar to global variables in other languages if the word static is used
(which is likely to be required so as to make the entity accessible by static
methods). If both static and final are used, they are global symbolic con-
stants. As an example,

static final double PI = 3.1415926535897932;

Note the use of the common convention of naming symbolic constants
entirely in uppercase. If several words form the identifier name, they are sepa-
rated by the underscore character, as in MAX_INT_VALUE.

If the word static is omitted, then the variable (or constant) has a differ-
ent meaning, which is discussed in Section 3.6.5.

summary

This chapter discussed the primitive features of Java, such as primitive
types, operators, conditional and looping statements, and methods that are
found in almost any language.

Any nontrivial program will require the use of nonprimitive types, called
reference types, which are discussed in the next chapter.

key concepts

assignment operators In Java, used to alter the value of a variable. These oper-
ators include =, +=, -=, *=, and /=. (9)

autoincrement (++) and autodecrement (--) operators Operators that add and
subtract 1, respectively. There are two forms of incrementing and decre-
menting prefix and postfix. (10)

key concepts

21

binary arithmetic operators Used to perform basic arithmetic. Java provides
several, including +, -, *, /, and %. (10)

block A sequence of statements within braces. (13)

break statement A statement that exits the innermost loop or switch statement.
(16)

bytecode Portable intermediate code generated by the Java compiler. (4)

call-by-value The Java parameter-passing mechanism whereby the actual
argument is copied into the formal parameter. (18)

comments Make code easier for humans to read but have no semantic meaning.
Java has three forms of comments. (5)

conditional operator (?:) An operator that is used in an expression as a short-
hand for simple if-else statements. (17)

continue statement A statement that goes to the next iteration of the innermost
loop. (17)

do statement A looping construct that guarantees the loop is executed at least
once. (15)

equality operators In Java, == and != are used to compare two values; they
return either true or false (as appropriate). (11)

escape sequence Used to represent certain character constants. (7)

for statement A looping construct used primarily for simple iteration. (14)
identifier Used to name a variable or method. (7)

if statement The fundamental decision maker. (13)

integral types byte, char, short, int, and Tong. (6)

java The Java interpreter, which processes bytecodes. (4)

javac The Java compiler; generates bytecodes. (4)

labeled break statement A break statement used to exit from nested loops. (16)

logical operators &%, ||, and !, used to simulate the Boolean algebra concepts
of AND, OR, and NOT. (12)

main The special method that is invoked when the program is run. (6)

method The Java equivalent of a function. (18)

method declaration Consists of the method header and body. (18)

method header Consists of the name, return type, and parameter list. (18)

null statement A statement that consists of a semicolon by itself. (13)

octal and hexadecimal integer constants Integer constants can be represented in
either decimal, octal, or hexadecimal notation. Octal notation is indicated
by a leading 0; hexadecimal is indicated by a leading 0x or 0X. (7)

overloading of a method name The action of allowing several methods to have
the same name as long as their parameter list types differ. (19)

22 chapter 1 primitive java

primitive types In Java, integer, floating-point, Boolean, and character. (6)

relational operators In Java, <, <=, >, and >= are used to decide which of two
values is smaller or larger; they return true or false. (11)

return statement A statement used to return information to the caller. (19)

short-circuit evaluation The process whereby if the result of a logical operator
can be determined by examining the first expression, then the second
expression is not evaluated. (12)

signature The combination of the method name and the parameter list types.
The return type is not part of the signature. (18)

standard input The terminal, unless redirected. There are also streams for
standard output and standard error. (4)

static final entity A global constant. (20)

static method Occasionally used to mimic C-style functions; discussed more
fully in Section 3.6. (18)

string constant A constant that consists of a sequence of characters enclosed
by double quotes. (7)

switch statement A statement used to select among several small integral values.
a7

type conversion operator An operator used to generate an unnamed temporary
variable of a new type. (10)

unary operators Require one operand. Several unary operators are defined,
including unary minus (-) and the autoincrement and autodecrement
operators (++ and --). (10)

Unicode International character set that contains over 30,000 distinct charac-
ters covering the principle written languages. (6)

while statement The most basic form of looping. (14)

Virtual Machine The bytecode interpreter. (4)

common errors

1. Adding unnecessary semicolons gives logical errors because the semi-
colon by itself is the null statement. This means that an unintended
semicolon immediately following a for, while, or if statement is very
likely to go undetected and will break your program.

2. At compile time, the Java compiler is required to detect all instances in
which a method that is supposed to return a value fails to do so. Occasion-
ally, it provides a false alarm, and you have to rearrange code.

3. A leading 0 makes an integer constant octal when seen as a token in
source code. So 037 is equivalent to decimal 31.

