CHAPTER

Introduction to CUDA

CHAPTER CONTENTS

3.1 Data Parallelismccooeeeeireccer s e re s e s s s s es s s se e s s s snss e s s nes smme ennmnnns 39
3.2 CUDA Program SHUCLUTe............cccoemreerereccce e sessssse s e se e s smsmmn e seen e smsmmmcnnnenesns 41
3.3 A Matrix—Matrix Multiplication Exampleccoreeeee e 42
3.4 Device Memories and Data Transfer...........cccccveveeirsscmersscrrs s cees s s eeessmcneeenses 46
3.5 Kernel Functions and Threading...........cccceeeeirereccrrssceseess s rs s sccsessmssseessmmssessses 51
B B 1T 111 T 56
3.6.1 Function declarations.........ccceiieeeiiiiiiiie e 56
3.6.2 Kernel JaunCh.... ..ot e e e 56
3.6.3 Predefined variables ... e 56
3.6.4 RUNEiMe APl ..ottt e e 57
References and Further Reading ... e er e s s cn e e e s 57
INTRODUCTION

To a CUDA™ programmer, the computing system consists of a sost, which is
a traditional central processing unit (CPU), such as an Intel® architecture
microprocessor in personal computers today, and one or more devices, which
are massively parallel processors equipped with a large number of arithmetic
execution units. In modern software applications, program sections often
exhibit arich amount of data parallelism, a property allowing many arithmetic
operations to be safely performed on program data structures in a simulta-
neous manner. The CUDA devices accelerate the execution of these applica-
tions by harvesting a large amount of data parallelism. Because data
parallelism plays such an important role in CUDA, we will first discuss the
concept of data parallelism before introducing the basic features of CUDA.

2.7 DATA PARALLELISM

Many software applications that process a large amount of data and thus
incur long execution times on today’s computers are designed to model
real-world, physical phenomena. Images and video frames are snapshots

39

40

CHAPTER 3 Introduction to CUDA

of a physical world where different parts of a picture capture simultaneous,
independent physical events. Rigid body physics and fluid dynamics model
natural forces and movements that can be independently evaluated within
small time steps. Such independent evaluation is the basis of data parallel-
ism in these applications.

As we mentioned earlier, data parallelism refers to the program property
whereby many arithmetic operations can be safely performed on the data
structures in a simultaneous manner. We illustrate the concept of data par-
allelism with a matrix—matrix multiplication (matrix multiplication, for
brevity) example in Figure 3.1. In this example, each element of the product
matrix P is generated by performing a dot product between a row of input
matrix M and a column of input matrix N. In Figure 3.1, the highlighted
element of matrix P is generated by taking the dot product of the high-
lighted row of matrix M and the highlighted column of matrix N. Note that
the dot product operations for computing different matrix P elements can be
simultaneously performed. That is, none of these dot products will affect

FIGURE 3.1
Data parallelism in matrix multiplication.

3.2 CUDA Program Structure 41

the results of each other. For large matrices, the number of dot products can
be very large; for example, a 1000 x 1000 matrix multiplication has
1,000,000 independent dot products, each involving 1000 multiply and
1000 accumulate arithmetic operations. Therefore, matrix multiplication
of large dimensions can have very large amount of data parallelism. By
executing many dot products in parallel, a CUDA device can significantly
accelerate the execution of the matrix multiplication over a traditional host
CPU. The data parallelism in real applications is not always as simple as
that in our matrix multiplication example. In a later chapter, we will discuss
these more sophisticated forms of data parallelism.

st

Z.Z CUDA PROGRAM STRUCTURE

A CUDA program consists of one or more phases that are executed on
either the host (CPU) or a device such as a GPU. The phases that exhibit
little or no data parallelism are implemented in host code. The phases that
exhibit rich amount of data parallelism are implemented in the device code.
A CUDA program is a unified source code encompassing both host and
device code. The NVIDIA® C compiler (nvcc) separates the two during
the compilation process. The host code is straight ANSI C code; it is further
compiled with the host’s standard C compilers and runs as an ordinary CPU
process. The device code is written using ANSI C extended with keywords
for labeling data-parallel functions, called kernels, and their associated data
structures. The device code is typically further compiled by the nvcee and
executed on a GPU device. In situations where no device is available or
the kernel is more appropriately executed on a CPU, one can also choose
to execute kemels on a CPU using the emulation features in CUDA soft-
ware development kit (SDK) or the MCUDA tool [Stratton 2008].

The kernel functions (or, simply, kernels) typically generate a large
number of threads to exploit data parallelism. In the matrix multiplication
example, the entire matrix multiplication computation can be implemented
as a kernel where each thread is used to compute one element of output
matrix P. In this example, the number of threads used by the kernel is a
function of the matrix dimension. For a 1000 x 1000 matrix multiplication,
the kernel that uses one thread to compute one P element would generate
1,000,000 threads when it is invoked. It is worth noting that CUDA threads
are of much lighter weight than the CPU threads. CUDA programmers can
assume that these threads take very few cycles to generate and schedule due
to efficient hardware support. This is in contrast with the CPU threads that
typically require thousands of clock cycles to generate and schedule.

A

42

CHAPTER 3 Introduction to CUDA

CPU serial code
Gnd §

GPU parallel kernel
KernelA<<< nBIK, nTid >>>(args);

CPU serial code

GPU parallel kernel
KernelA<<< nBIK, nTid >>>(args);

FIGURE 3.2
Execution of a CUDA program.

The execution of a typical CUDA program is illustrated in Figure 3.2.
The execution starts with host (CPU) execution. When a kernel function is
invoked, or launched, the execution is moved to a device (GPU), where a
large number of threads are generated to take advantage of abundant data par-
allelism. All the threads that are generated by a kernel during an invocation
are collectively called a grid. Figure 3.2 shows the execution of two grids
of threads. We will discuss how these grids are organized soon. When all
threads of a kernel complete their execution, the corresponding grid termi-
nates, and the execution continues on the host until another kernel is invoked.

2.2 A MATRIX-MATRIX MULTIPLICATION EXAMPLE

At this point, it is worthwhile to introduce a code example that concretely
illustrates the CUDA program structure. Figure 3.3 shows a simple main
function skeleton for the matrix multiplication example. For simplicity,
we assume that the matrices are square in shape, and the dimension of each
matrix is specified by the parameter Width.

The main program first allocates the M, N, and P matrices in the host
memory and then performs I/O to read in M and N in Part 1. These are
ANSI C operations, so we are not showing the actual code for the sake of
brevity. The detailed code of the main function and some user-defined
ANSI C functions is shown in Appendix A. Similarly, after completing
the matrix multiplication, Part 3 of the main function performs I/O to write
the product matrix P and to free all the allocated matrices. The details of
Part 3 are also shown in Appendix A. Part 2 is the main focus of our

3.3 A Matrix—Matrix Multiplication Example 43

int main(void) {
1. //Allocateandinitialize thematricesM, N, P
// 1/0 to read the input matrices Mand N

2. //M>*Non the device
MatrixMultiplication(M, N, P, Width);

3. //1/0towrite the output matrix P
// Free matrices M, N, P

return 0;

}

FIGURE 3.3
A simple main function for the matrix multiplication example.

example. It calls a function, MatrixMultiplication(), to perform matrix
multiplication on a device.

Before we explain how to use a CUDA device to execute the matrix
multiplication function, it is helptul to first review how a conventional CPU-only
matrix multiplication function works. A simple version of a CPU-only matrix
multiplication function is shown in Figure 3.4. The MatrixMultiplication()
function implements a straightforward algorithm that consists of three loop
levels. The innermost loop iterates over variable k and steps through one
row of matrix M and one column of matrix N. The loop calculates a dot
product of the row of M and the column of N and generates one element
of P. Immediately after the innermost loop, the P element generated is
written into the output P matrix.

The index used for accessing the M matrix in the innermost loop
is i*Width+k. This is because the M matrix elements are placed into the
system memory that is ultimately accessed with a linear address. That is,
every location in the system memory has an address that ranges from O to
the largest memory location. For C programs, the placement of a 2-dimen-
sional matrix into this linear addressed memory is done according to the
row-major convention, as illustrated in Figure 3.5." All elements of a row
are placed into consecutive memory locations. The rows are then placed
one after another. Figure 3.5 shows an example where a 4x4 matrix is

INote that FORTRAN adopts the column-major placement approach: All elements of a
column are first placed into consecutive locations, and all columns are then placed in their
numerical order.

44

CHAPTER 3 Introduction to CUDA

void MatrixMultiplication(float* M, float* N, float* P, int Width)
{
for (int i = 0; i < Width; ++1)
for (int j = 0; j < Width; +j) {
float sum = 0;
for (int k = 0; k < Width; +tk) {
float a = M[{ * width + k1;
float b = N[k * width + j1;
sum += a * b;
}
PLi * Width + j1 = sum;

FIGURE 3.4
A simple matrix multiplication function with only host code.

FIGURE 3.5

Placement of two-dimensional array elements into the linear address system
memory.

3.3 A Matrix—Matrix Multiplication Example 45

placed into 16 consecutive locations, with all elements of row 0 first
followed by the four elements of row 1, etc. Therefore, the index for an
M clement in row i and column k is i*Width+k. The i*Width term skips
over all elements of the rows before row i. The k term then selects the
proper element within the section for row i.

The outer two (i and j) loops in Figure 3.4 jointly iterate over all rows of
M and all columns of N; each joint iteration performs a row—column dot
product to generate one P element. Each i value identifies a row. By sys-
tematically iterating all M rows and all N columns, the function generates
all P elements. We now have a complete matrix multiplication function that
executes solely on the CPU. Note that all of the code that we have shown so
far is in standard C.

Assume that a programmer now wants to port the matrix multiplication
function into CUDA. A straightforward way to do so is to modify
the MatrixMultiplication() function to move the bulk of the calculation
to a CUDA device. The structure of the revised function is shown in
Figure 3.6. Part 1 of the function allocates device (GPU) memory to hold
copies of the M, N, and P matrices and copies these matrices over to the
device memory. Part 2 invokes a kernel that launches parallel execution
of the actual matrix multiplication on the device. Part 3 copies the product
matrix P from the device memory back to the host memory.

Note that the revised MatrixMultiplication() function is essentially an
outsourcing agent that ships input data to a device, activates the calculation on
the device, and collects the results from the device. The agent does so in such

void MatrixMultipiication{ficat* M, fiocat* N, float* P, int Width)
{

int size=Width * Width * sizeof(float);

float* Md, Nd, Pd;

1., /7 Mlocate device memory for M, N, and P
// copy Mand N to allocated device memory focations

2. // Kernel invocation code - to have the device to perform
// the actual matrix multiplication

3. // copy P from the device memory
[/ Free device matrices
}
FIGURE 3.6

Outline of a revised host code MatrixMultiplication() that moves the matrix
multiplication to a device.

46

CHAPTER 3 Introduction to CUDA

a way that the main program does not have to even be aware that the matrix
multiplication is now actually done on a device. The details of the revised
function, as well as the way to compose the kernel function, will serve as illus-
trations as we introduce the basic features of the CUDA programming model.

2.4 DEVICE MEMORIES AND DATA TRANSFER

In CUDA, the host and devices have separate memory spaces. This reflects
the reality that devices are typically hardware cards that come with their
own dynamic random access memory (DRAM). For example, the NVIDIA
T10 processor comes with up to 4 GB (billion bytes, or gigabytes) of
DRAM. In order to execute a kernel on a device, the programmer needs
to allocate memory on the device and transfer pertinent data from the
host memory to the allocated device memory. This corresponds to Part 1
of Figure 3.6. Similarly, after device execution, the programmer needs to
transfer result data from the device memory back to the host memory and
free up the device memory that is no longer needed. This corresponds to
Part 3 of Figure 3.6. The CUDA runtime system provides application
programming interface (API) functions to perform these activities on behalf
of the programmer. From this point on, we will simply say that a piece of
data is transferred from host to device as shorthand for saying that the piece
of data is transferred from the host memory to the device memory.
The same holds for the opposite data transfer direction.

Figure 3.7 shows an overview of the CUDA device memory model for
programmers to reason about the allocation, movement, and usage of the var-
ious memory types of a device. At the bottom of the figure, we see global
memory and constant memory. These are the memories that the host code
can transfer data to and from the device, as illustrated by the bidirectional
arrows between these memories and the host. Constant memory allows
read-only access by the device code and is described in Chapter 5. For now,
we will focus on the use of global memory. Note that the host memory is
not explicitly shown in Figure 3.7 but is assumed to be contained in the host.?

The CUDA memory model is supported by API functions that help
CUDA programmers to manage data in these memories. Figure 3.8 shows
the API functions for allocating and deallocating device global memory.
The function cudaMalloc() can be called from the host code to allocate

2Note that we have omitted the texture memory from Figure 3.7 for simplicity. We will
introduce texture memory later.

3.4 Device Memories and Data Transfer 47

¢ Device code can:

— R/W per-thread regisiers

R/W per-thread local memery

R/W per-block shared memory

R/W per-grid gicbal memaory

Read only per-grid constant
Mmemery
* Host code can

— Transfer data to/from per-grid
ulobal and constant mamories

FIGURE 3.7
Overview of the CUDA device memory model.

« cudaMalloc()

— Allocates object in the device
global memory

— Two parameters

« Address of a pointef®
allocated object

* Size of of allocated object in
terms of bytes

s cudaFree()

— Frees object from device
global memory

¢ Pointer to freed object

FIGURE 3.8
CUDA API functions for device global memory management.

a piece of global memory for an object. The reader should be able to notice
the striking similarity between cudaMalloc() and the standard C runtime
library malloc (). This is intentional; CUDA is C with minimal extensions.
CUDA uses the standard C runtime library malloc() function to manage

48

CHAPTER 3 Introduction to CUDA

the host memory and adds cudaMalloc() as an extension to the C runtime
library. By keeping the interface as close to the original C runtime libraries
as possible, CUDA minimizes the time that a C programmer needs to
relearn the use of these extensions.

The first parameter of the cudaMalloc() function is the address of a
pointer variable that must point to the allocated object after allocation.
The address of the pointer variable should be cast to (void **) because
the function expects a generic pointer value; the memory allocation func-
tion is a generic function that is not restricted to any particular type of
objects. This address allows the cudaMalloc() function to write the address
of the allocated object into the pointer variable.? The second parameter of
the cudaMalloc() function gives the size of the object to be allocated, in
terms of bytes. The usage of this second parameter is consistent with the
size parameter of the C malloc() function.

We now use a simple code example illustrating the use of cudaMalloc().
This is a continuation of the example in Figure 3.6. For clarity, we will end
a pointer variable with the letter “d” to indicate that the variable is used to
point to an object in the device memory space. The programmer passes the
address of Md (i.e., &Md) as the first parameter after casting it to a void
pointer; that is, Md is the pointer that points to the device global memory
region allocated for the M matrix. The size of the allocated array will
be Width*Width*4 (the size of a single-precision floating number). After
the computation, cudaFree() is called with pointer Md as input to free the
storage space for the M matrix from the device global memory:

float *Md
int size =Width * Width * sizeof(float);
cudaMalloc((void**)8&Md, size);

cudaFree(Md);

The reader should complete Part 1 of the MatrixMultiplication() exam-
ple in Figure 3.6 with similar declarations of an Nd and a Pd pointer variable as

3Note that cudaMalloc() has a different format from the C malloc() function. The
C Malloc() function returns a pointer to the allocated object. It takes only one
parameter that specifies the size of the allocated object. The cudaMalloc() function
writes to the pointer variable whose address is given as the first parameter. As a result,
the cudaMalloc () function takes two parameters. The two-parameter format of cuda -
Malloc() allows it to use the return value to report any etrrors in the same way as other
CUDA API functions.

