第5章 树和二叉树

5.1 本章教学要点

5.1.1 知识点的组织结构

树结构是非常重要的一种非线性结构,具有严格的层次特征,是本课程的重点和难点。本章的内容由树和二叉树两部分组成,并且以二叉链表存储结构为媒介,实现了树和二叉树之间的转换,知识点的组织结构如图 5-1 所示。

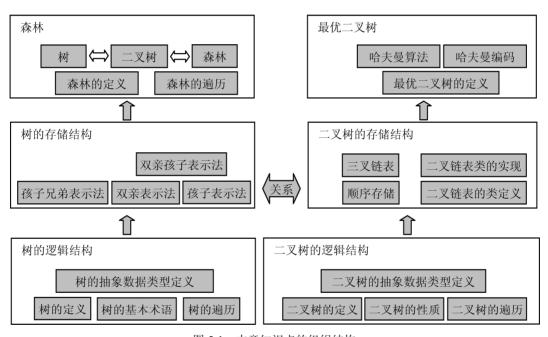


图 5-1 本章知识点的组织结构

5.1.2 教学提示

本章的教学重点是:①二叉树的性质;②二叉树和树的存储表示;③二叉树的遍历及算法实现;④树与二叉树的转换关系;⑤哈夫曼树及应用。

本章的教学难点是:①二叉树遍历算法的非递归实现;②基于二叉树的遍历实现二叉树的其他操作; ③树的基本操作的实现。

对于树的教学要抓住一条明线:树的逻辑结构→树的存储结构,一个重点:树的遍历操作。对于树的逻辑结构,要从树的定义出发,在与线性表定义进行比较的基础上,把握要点理解树的定义及其逻辑

特征,通过具体实例理解树的基本术语,从逻辑上理解树的遍历操作,最后给出树的抽象数据类型定义。 对于树的存储结构,要以如何表示树中结点之间的逻辑关系为出发点,掌握树的不同存储方法以及它们 之间的关系。

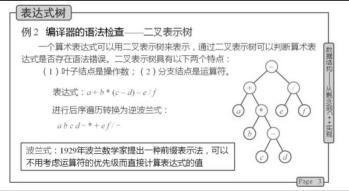
对于二叉树的教学要抓住一条明线:二叉树的逻辑结构→二叉树的存储结构→二叉树的实现,一个重点:二叉树的遍历操作及其实现。对于二叉树的逻辑结构,要从二叉树的定义出发,在与树的定义进行比较的基础上,理解树和二叉树是两种树结构,通过二叉树的性质加深对二叉树逻辑结构的理解,从逻辑上掌握二叉树的遍历方法,最后给出二叉树的抽象数据类型定义。对于二叉树的存储结构,要从二叉树的逻辑特征和基本性质出发,掌握二叉树的不同存储方法以及它们之间的关系,基于二叉链表存储结构讨论二叉树遍历操作的实现。

5.2 教学专题 1——引言

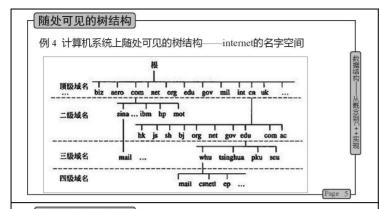
5.2.1 教学过程设计

教学专题	树的提出	授课学时	15 分	钟			
教学章节	5.1	授课对象	计算机专业本科生				
教学课型	理论课	授课形式	式 课堂讲授				
教学重点	树结构作为数据模型的应用实例						
教学难点	无						
	知识点 实际问题中树结构的例子		学习要求				
教学内容			了解	理解	掌握	熟练掌握	
和				√			
教学目标	计算机系统中树结构的例子			√			
	生活中树结构的例子		√				
	教学过程设计 时间分						
	1. 以操作系统的文件目录结构为例,说明树在计算机系统中的使用。						
教学过程	2. 介绍二叉表示树,给出一个表达式转换为二叉表示树的例子。						
	3. 介绍计算机系统中树结构的经典实例。					3 分钟	
	4. 介绍日常生活中树结构的经典实例					3 分钟	
教学提示	很多实际问题抽象的数据模型是树结构,最简单的树结构是二叉树,说明有必要忽略						
双子 旋小	具体的数据类型,讨论如何存储和实现树和二叉树						
媒体使用	多媒体课件:借助视觉通道,用图片及动画形象展示实际问题中、计算机系统和日常						
	生活中随处可见的树结构						
7/K T X 13	生活中随处可见的树结构						

5.2.2 课件及教学设计

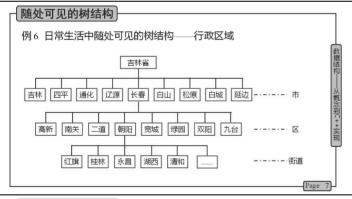


树结构通常用来描述具有包含关系 或层次关系的数据模型,在计算机系统 和日常生活中都有很多应用实例。树与 二叉树是本课程的难点和重点。


操作系统用树结构来组织文件夹和 文件,因此,不同文件夹下可以有同名 文件。

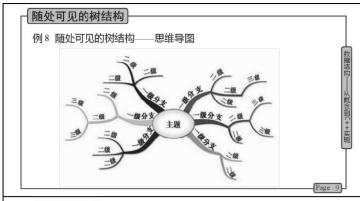
1929 年波兰数学家提出表达式的一种前缀表示法,可以不用考虑优先级直接计算,例如,3+4×2 的前缀表达式是+3×42,从前向后扫描遇到运算符就与随后的两个操作数进行计算。为了便于计算机处理,避免重复扫描表达式,提出了后缀表达式,也称逆波兰式。

每个菜单与其下拉菜单是树结构, 右键的弹出菜单也是树结构。你认为菜 单树结构的层数最多是多少?



在因特网名字空间对应的树结构中,一条路径构成一个实际网址,例如,tsinghua.edu.cn。

对于一本书或一篇论文,什么是结构合理?首先看目录,不存在度为1的分支结点,章和章之间、节和节之间、小节和小节之间是并列或递进关系,章、节和小节之间是包含关系。


读小说时,复杂的家族关系用树结 构来描述就清楚多了。

树结构在行政管理中有很多应用, 例如,一个单位的组织机构、行政区域 的划分等。

中小学生都用知识树来梳理知识单元, 使零散的知识用树结构串接起来。

近年来流行的思维导图也是树结构,能够很好地梳理思路和要表达的事情,例如,找工作时投递的简历,用思维导图写到一页纸上,既方便 HR 阅读也便于迅速了解求职者。

关于树结构

什么是树?在逻辑上有什么特点?有哪些基本术语?
如何存储树结构?
什么是二叉树?在逻辑上有什么特点?有哪些基本性质?
如何存储二叉树?
如何实现二叉树的遍历操作?
最优二叉树及应用

树结构较复杂,需要介绍一些常见 的基本术语。

二叉树是最简单的树结构,且树可以转换为二叉树,因此重点讨论二叉树, 包括逻辑结构、基本性质、存储结构、 基本操作的实现。

5.3 教学专题 2——树的逻辑结构

5.3.1 教学过程设计

教学专题	树的逻辑结构	授课学	时	45 分钟			
教学章节	5.2	授课对象 i		计算机专业本科生			
教学课型	理论课	授课形式 i		课堂讲授			
教学重点	树的定义和基本术语;树的遍历操	义和基本术语; 树的遍历操作					
教学难点	树的遍历操作						
	知识点			学习要求			
教学内容 和 教学目标			了	解	理解	掌握	熟练掌握
	树的定义						√
	树的基本术语					√	
	树的抽象数据类型定义				√		
	树的遍历操作						√

	教学过程设计	时间分配				
	1. 给出树的定义, 在与线性表定义比较的基础上, 抓住要点——互不相交,					
	深刻理解树的逻辑特征。					
	2. 结合实例分类讲授树的基本术语。					
	3. 小结: 将树结构和线性结构从逻辑结构上做比较。					
教学过程	4. 复习 ADT 的三个视图,给出树的 ADT 定义。					
1X 1 X21II	5. 理解什么是遍历,重点解释两点:访问的含义和遍历次序。					
	6. 由树的组成得到两种遍历次序: 前序遍历和后序遍历, 由树的层次特征	2 分钟				
	得到另一种遍历次序: 层序遍历。					
	7. 树的遍历操作定义采用递归方法。引申: 树结构本身具有递归特性,相	4 分钟				
	应地,求解问题常常采用递归的方法。					
	8. 结合树的实例练习各种遍历方法	3 分钟				
	树结构在计算机软件系统中的应用较多,比较直观的有操作系统中的文件组织、软件					
	界面中的多级下拉菜单,另外,比较典型的应用还有描述递归执行过程的递归树、描					
教学提示	述判定过程的判定树、编译程序中进行语法检查的语法树等。注意从应用的角度以具					
教子提示	体实例引起学生对本章的重视。					
	对于树的遍历,首先要从逻辑上理解遍历操作的执行过程,然后再基于存储结构实现,					
	这也体现了抽象分级的观点					
4tt /4. /tt III	多媒体课件:用动画辅助讲授基本术语,形象展示树的遍历过程。					
媒体使用	扫描二维码获得多媒体课件和程序源代码					
课后导读	树结构更复杂的抽象数据类型定义,请参见《数据结构(C语言版)》(严蔚敏编著,					
	清华大学出版社) P119; 除了逻辑关系图, 树结构还有其他逻辑表示方法, 请参见《数					
	据结构(C语言版)》(严蔚敏编著,清华大学出版社)P120					
教学后记	教学感想、意外发现、点滴收获、个别疏漏及补救					

5.3.2 课件及教学设计

Page 2

讲什么?

材的定义及逻辑特征

慰 树的基本术语

财 树的抽象数据类型定义

材的遍历的操作定义

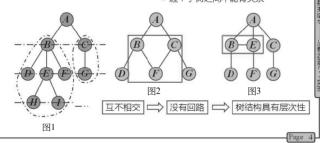
树的基本术语要达到识记(认识并记住)的程度,注意理解而不是死记硬背。

本讲在不涉及存储结构的前提下,对 于树的遍历讨论其操作定义并运行实例, 注意是在逻辑结构上讨论树的遍历操作, 也就是"问题→想法"阶段。

树的定义

数据元素

★ 树: $n(n \ge 0)$ 个结点的有限集合,当n = 0 时,称为空树;任意一棵非空树T满足以下条件:


- (1)有且仅有一个特定的称为根的结点;
- (2) 当 n>1 时,除根结点之外的其余结点被分成 m (m>0) 个 互不相交的有限集合 T_1,T_2,\ldots,T_m ,其中每个集合又是一棵树,并称为这个根结点的子树。

树的定义是采用递归方法

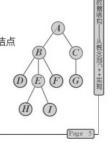
与线性表的定义比较,最大的差别是什么?序列——集合,逻辑结构不同。

树的定义表明树结构本身具有递归特征,相应地,求解问题常常采用递归的方法。递归技术是一些同学尚未很好掌握的一种程序设计技术,本课程将进一步理解和掌握说归技术。

逻辑特征

如何理解子集的互不相交? (1) 在 图 2 中,结点 F属于哪棵子树? (2) 在 图 3 中,结点 B和 E是什么关系?

略微观察就会发现,由于子树互不相 交,树中必然没有回路,因此树结构具有 层次性。


基本术语

★ 结点的度:结点所拥有的子树的个数

★ 树的度:树中各结点度的最大值

★ 叶子结点:度为 0 的结点,也称为终端结点

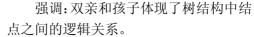
★ 分支结点:度不为 0 的结点,也称为非终端结点

理解起来,结点的度就是从该结点出发的分枝数(即边数)。

叶子结点有哪些?分支结点有哪些?根结点是分支结点吗?

Page 6

★ 孩子: 树结构中某结点子树的根结点称为这个结点的孩子结点

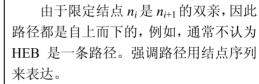

★ 双亲:这个结点称为它孩子结点的双亲结点

★ 兄弟:具有同一个双亲的孩子结点互称为兄弟

◎ 在线性结构中,逻辑关系表现为前驱——后继

∅ 在树结构中,逻辑关系表现为双亲——孩子

观察线性表和树的逻辑结构图,逻辑 关系体现为边,其他关系如兄弟都是间接 关系。

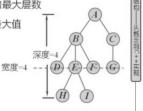

从术语可以发现,家谱是一种典型的 树结构,结合家谱理解树的基本术语。

基本术语

★ 路径:结点序列 $n_1, n_2, ..., n_k$ 称为一条由 n_1 至 n_k 的路径,当且 仅当满足如下关系:结点 n_i 是 n_{i+1} 的双亲(1 <= i < k)

★ 路径长度:路径上经过的边的个数

② 在树结构中,路径是唯一的


显然,某结点的子树中所有结点都是该结点的子孙。

基本术语

★ 结点所在层数:根结点的层数为 1;对其余结点,若某结点在 第 k 层,则其孩子结点在第 k+1 层

★ 树的深度(高度):树中所有结点的最大层数

★ 树的宽度:树中每一层结点个数的最大值

为什么树可以定义层数?子树互不相交。

有些教材对于树的深度和高度的定义不同;有些教材将根结点所在的层数定义为0。

线性结构

开始结点(只有一个):无前驱

终端结点(只有一个):无后继

其它元素:一个前驱,一个后继

—对—

根结点(只有一个):无双亲

树结构

叶子结点(可以有多个):无孩子

其它结点:一个双亲,多个孩子

一对多

将树结构和线性结构在逻辑结构上 进行比较,通过对比将知识点串接起来。

树的应用很广泛,在不同的实际应用中,树的基本操作不尽相同

ADT Tree DataModel

树由一个根结点和若干棵子树构成,树中结点具有层次关系

Operation

InitTree:初始化一棵树 DestroyTree:销毁一棵树 PreOrder: 前序遍历树

PostOrder: 后序遍历树 LeverOrder: 层序遍历树 简单起见,只讨论树的遍历

endADT

Page 10

如何定义树的 ADT 呢? 为了突出主 题,不失一般性,只讨论遍历操作,更简 单的操作(如查找结点 x 的双亲、为结点 x 增加一个孩子 v 等) 在讲授存储结构时 通过课堂练习完成, 更复杂的操作(如统 计结点个数) 在遍历过程中完成。

树的遍历

● 什么是遍历? 线性结构如何遍历?

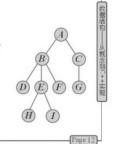
简言之,遍历是对数据集合进行没有遗漏、没有重复的访问

 (a_1) (a_2) - - - (a_i) - - - (a_n)

★ 树的遍历:从根结点出发,按照某种次序访问树中所有结点,并 且每个结点仅被访问一次

前序(根)、后序(根)和层序(次)等

抽象操作,可以是对结点进行的各种处理,这里简化为输出结点的数据


前序遍历

★ 树的前序遍历操作定义:

若树为空,则空操作返回;否则

- (1)访问根结点
- (2)从左到右前序遍历根结点的每一棵子树

前序遍历序列: ABDEHIF CG

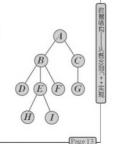
由于元素之间具有唯一的前驱和后 继关系,线性表可以按序号依次访问每个 数据元素。

如何理解访问?访问是一种抽象操 作,即逻辑操作、不确定的操作,实际应 用中可以是对结点进行的各种处理。体会 抽象的好处。

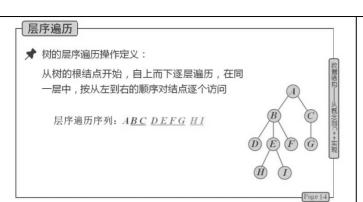
根结点相当于开始结点:按照什么次 序呢?考虑树的组成。

由树的定义出发,分析树的构成(R, T_1 , …, T_m), 采取问题分解的方法——分 治法求解问题。以子树而不是结点为单位 进行遍历,引导学生的框架(系统)思维。

树的前序遍历是递归的,根本原因是 什么?树结构本身具有递归特征。


后序遍历

★ 树的后序遍历操作定义:


若树为空,则空操作返回;否则

- (1)从左到右后序遍历根结点的每一棵子树
- (2)访问根结点

后序遍历序列: DHIEFB GC A

可以看出是直接递归,注意访问结点 的框架: 先访问第1棵子树的6个结点, 再访问第2棵子树的2个结点,最后访问 根结点,不要把遍历序列讲零散了。

由于树结构具有层次性,因此有层序遍历,也就是广度优先。

对树进行遍历的意义在于,提供了一种对结点依次处理的方式,可以在遍历过程中对结点进行各种处理。

5.3.3 随堂小测验

1. 在树中没有回路。	,其根本原因在于()。		
A. 子树互不相交		B. 树是一种层次约	吉构	
C. 树的定义是递	归的	D. 树只有一个根约	吉点	
2. 在树结构中,逻辑	辑关系体现为兄弟之间]的关系。()		
A. 正确	B. 错误			
3. 在树结构中,路线	经有时不唯一。())		
A. 正确	B. 错误			
4. 在树结构中,根:	结点只有一个,但是一	·定有多个叶子结点。	()	
A. 正确	B. 错误			
5. 在树的前序遍历	序列中,任意一个结点	均处在其子女的前面	ī。()	
A. 正确	B. 错误			
6. 对图 5-2 所示树,	回答下列问题:			
(1) 树的度是(),树的深度是(),树的宽度是()。	
A. 2	B. 3	C. 4	D. 5	
	是(),兄弟是(),双亲是(),祖先结点是	(), 子孙结点
是()。				\widehat{A}
A. (A)	B. (B)	C. (D, F)		
D. (F)	E. (A, B)	F. (I)		\mathcal{B} \mathcal{C}
G. (J)	* * *		\prec	
),分支结点是(D	$(E) (F) (G) \qquad (H)$
A. (D, E, F, G, H)		B. (D, I, J, G, H)		
C. (A, B, D, C, H)		D. (A, B, C, E, F)		图 5 2 押 村
	有()个,度为21	的结点有()个	,	图 5-2 一棵树
结点有())个。		~ •	- ·	
A. 1	B. 2	C. 3	D. 4	