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A

 

modem
 

complex
 

system
 

may
 

have
 

many
 

inputs
 

and
 

many
 

outputs,and
 

these
 

may
 

be
 

interrelated
 

in
 

a
 

complicated
 

manner.To
 

analyze
 

such
 

a
 

system,it
 

is
 

essential
 

to
 

reduce
 

the
 

complexity
 

of
 

the
 

mathematical
 

expressions
 

as
 

well
 

as
 

to
 

resort
 

to
 

computers
 

for
 

most
 

of
 

the
 

tedious
 

computations
 

necessary
 

in
 

the
 

analysis.The
 

state-space
 

approach
 

to
 

system
 

analysis
 

is
 

best
 

suited
 

from
 

this
 

viewpoint.
This

 

chapter
 

and
 

the
 

next
 

deal
 

with
 

the
 

state-space
 

analysis
 

of
 

control
 

systems.Basic
 

contexts
 

of
 

state-space
 

analysis
 

include
 

dynamic
 

analysis,controllability
 

&
 

observability.
The

 

former
 

is
 

presented
 

in
 

this
 

chapter,while
 

the
 

latter
 

in
 

the
 

next
 

chapter.Basic
 

design
 

methods
 

based
 

on
 

state-feedback
 

control
 

are
 

given
 

in
 

Chapter
 

6.
Outline

 

of
 

the
 

Chapter.Section
 

3.1
 

presents
 

the
 

solution
 

of
 

the
 

time-invariant
 

homogeneous
 

state
 

equation.Section
 

3.2
 

gives
 

the
 

properties
 

of
 

state-transition
 

matrice.
Section

 

3.3
 

provides
 

four
 

calculation
 

approaches
 

of
 

matrix
 

exponential
 

function.Section
 

3.4
 

presents
 

the
 

solution
 

of
 

the
 

time-invariant
 

nonhomogeneous
 

state
 

equations.Section
 

3.5
 

discusses
 

the
 

discretizing
 

of
 

linear
 

time-invariant
 

dynamic
 

equation
 

and
 

its
 

corresponding
 

solution.Finally,computation
 

of
 

control
 

system
 

response
 

with
 

MATLAB
 

is
 

given
 

in
 

section
 

3.6.

Desired
 

Outcomes
Upon

 

completion
 

of
 

Chapter
 

3,the
 

following
 

objectives
 

should
 

be
 

achieved:

Be
 

capability
 

of
 

obtaining
 

the
 

solution
 

of
 

the
 

state
 

equations.
Be

 

able
 

to
 

calculate
 

the
 

state
 

transition
 

matrix
 

through
 

Laplace
 

transform
 

approach.
Be

 

aware
 

of
 

the
 

basic
 

properties
 

of
 

the
 

state
 

transition
 

matrix.
Understand

 

discretization
 

of
 

linear
 

time-invariant
 

state
 

differential
 

equations.

3.1 Solving
 

the
 

Time-invariant
 

Homogeneous
 

State
 

Equation
In

 

this
 

section,on
 

the
 

basis
 

of
 

the
 

method
 

of
 

solution
 

of
 

the
 

scalar
 

differential
 

equation,we
 

shall
 

obtain
 

the
 

general
 

solution
 

of
 

the
 

linear
 

time-invariant
 

state
 

equation.

3.1.1 General
 

solution
 

of
 

the
 

scalar
 

differential
 

equation

Let
 

us
 

review
 

the
 

scalar
 

differential
 

equation.
x·=ax (3.1)

In
 

solving
 

this
 

equation,we
 

assume
 

a
 

solution
 

x(t)
 

of
 

the
 

form
x(t)=b0+b1t+b2t

2+…+bkt
k +… (3.2)

By
 

substituting
 

this
 

assumed
 

solution
 

into
 

Eq.(3.1),we
 

obtain
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b1+2b2t+3b3t
2+…+kbkt

k-1+…=a(b0+b1t+b2t
2+…+bkt

k +…)
   

(3.3)

  If
 

the
 

assumed
 

solution
 

is
 

to
 

be
 

the
 

true
 

solution,Eq.(3.3)
 

must
 

hold
 

for
 

any
 

t.
Hence,equating

 

the
 

coefficents
 

of
 

the
 

equal
 

powers
 

of
 

t,we
 

obtain
b1=ab0

b2=
1
2ab1=

1
2a

2b0

b3=
1
3ab2=

1
3×2

a3b0

︙

bk =
1

k! a
kb0

The
 

value
 

of
 

b0 is
 

determined
 

by
 

substituting
 

t=0
 

into
 

Eq.(3.2),or
x(0)=b0

Hence,the
 

solution
 

x(t)
 

can
 

be
 

written
 

as

x(t)= 1+at+
1
2! a

2t2+…+
1

k! a
ktk +…  x(0)

=eatx(0)

3.1.2 General
 

solution
 

of
 

the
 

vector-matrix
 

differential
 

equation

Let
 

us
 

now
 

solve
 

the
 

vector-matrix
 

differential
 

equation
x·=Ax (3.4)

where
 

x=n-vector,A=n×n
 

constant
 

matrix.
By

 

analogy
 

with
 

the
 

scalar
 

case,we
 

assume
 

that
 

the
 

solution
 

is
 

in
 

the
 

form
 

of
 

a
 

vector
 

power
 

series
 

in
 

t,or
x(t)=b0+b1t+b2t

2+…+bkt
k +… (3.5)

By
 

substituting
 

this
 

assumed
 

solution
 

into
 

Eq.(3.4),we
 

obtain
b1+2b2t+3b3t

2+…+kbkt
k-1+…=A(b0+b1t+b2t

2+…+bkt
k +…)

(3.6)

If
 

the
 

assumed
 

solution
 

is
 

to
 

be
 

the
 

true
 

solution,Eq.(3.6)
 

must
 

hold
 

for
 

any
 

t.Hence,

equating
 

the
 

coefficents
 

of
 

like
 

powers
 

of
 

t
 

both
 

sides
 

of
 

Eq.(3.6),we
 

obtain
 

b1=Ab0

b2=
1
2Ab1=

1
2A

2b0

b3=
1
3Ab2=

1
3×2

A3b0

︙

bk =
1

k! A
kb0
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By
 

substituting
 

t=0
 

into
 

Eq.(3.5),we
 

obtain
x(0)=b0

Hence,the
 

solution
 

x(t)
 

can
 

be
 

written
 

as

x(t)= I+At+
1
2! A

2t2+…+
1

k! A
ktk +…  x(0)

The
 

expression
 

in
 

the
 

parentheses
 

on
 

the
 

right-hand
 

side
 

of
 

this
 

last
 

equation
 

is
 

an
 

n×n
 

marix.Because
 

of
 

its
 

similarity
 

to
 

the
 

infinite
 

power
 

series
 

for
 

a
 

scalar
 

exponential,we
 

call
 

it
 

the
 

matrix
 

exponential
 

function
 

and
 

write
 

as

I+At+
1
2! A

2t2+…+
1

k! A
ktk +…=eAt

         

(3.7)

In
 

terms
 

of
 

the
 

matrix
 

exponential
 

function,the
 

solution
 

to
 

Eq.(3.4)
 

can
 

be
 

written
 

as
 

x(t)=eAtx(0)
 

Often,we
 

represent
 

the
 

solution
 

to
 

Eq.(3.4)
 

as
x(t)=Φ(t)x(0)

where
 

n×n
 

matrix
 

Φ(t)
 

is
 

also
 

called
 

state-transition
 

matrix.Obviously,

Φ(t)=eAt

3.1.3 State-transition
 

matrix

We
 

can
 

write
 

the
 

solution
 

of
 

the
 

homogeneous
 

state
 

equation
x·=Ax (3.8)

as
x(t)=Φ(t)x(0)

 

or
 

x(t)=Φ(t-t0)x(t0)
       

(3.9)

From
 

Eq.(3.9),we
 

can
 

see
 

that
 

the
 

solution
 

of
 

Eq.(3.8)
 

is
 

simply
 

a
 

transformation
 

of
 

the
 

initial
 

condition,hence
 

the
 

name
 

state-transition
 

matrix,which
 

contains
 

all
 

the
 

information
 

about
 

the
 

free
 

motions
 

of
 

the
 

system.Φ (t)
 

or
 

Φ (t-t0)
 

is
 

not
 

a
 

constant
 

matrix
 

but
 

a
 

time-variant
 

matrix,which
 

makes
 

x(0)
 

or
 

x(t0)transfer
 

to
 

x(t)
 

or
 

x(t-t0).The
 

geometric
 

significance
 

of
 

state
 

trajectory,taking
 

two-dimensional
 

state
 

vector
 

for
 

example,

can
 

be
 

shown
 

in
 

Fig.3.1.

Fig.3.1 The
 

geometric
 

significance
 

of
 

state
 

trajectory

From
 

Fig.3.1,it
 

can
 

be
 

seen
 

that
 

if
 

the
 

state
 

x(t0)= x10 x20  Tat
 

initial
 

time
 

t0 

and
 

Φ(t1)are
 

known,the
 

state
 

x(t1)= x11 x21  Twill
 

be
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x(t1)=Φ(t1)x(0) (3.10)

And
 

if
 

Φ(t2)are
 

known,the
 

state
 

x(t2)= x12 x22  Twill
 

be
 

x(t2)=Φ(t2)x(0) (3.11)

  Eq.(3.10)
 

and
 

Eq.(3.11)
 

mean
 

that
 

initial
 

state
 

can
 

be
 

transferred
 

to
 

the
 

state
 

x(t1)
 

or
 

x(t2).If
 

let
 

the
 

state
 

x(t1)be
 

initial
 

state,the
 

state
 

x(t2)can
 

be
 

transferred
 

from
 

x(t1).That
 

is
 

to
 

say
x(t2)=Φ(t2-t1)x(t1) (3.12)

Substituting
 

x(t1)of
 

Eq.(3.10)
 

into
 

Eq.(3.12)
 

can
 

yield
x(t2)=Φ(t2-t1)Φ(t1)x(0) (3.13)

  Eq.(3.13)
 

shows
 

the
 

state
 

transformation
 

from
 

x(0)
 

to
 

x(t1)first
 

and
 

the
 

state
 

transformation
 

from
 

x(t1)
 

to
 

x(t2)
 

later.
Comparing

 

Eq.(3.11)
 

with
 

Eq.(3.13),we
 

have
Φ(t2)=Φ(t2-t1)Φ(t1)

or

e
At2 =e

A(t2-t1)e
At1

  Since
 

state-transition
 

matrix
 

or
 

matrix
 

exponential
 

function
 

is
 

very
 

important
 

in
 

the
 

state-space
 

analysis
 

of
 

linear
 

system,we
 

shall
 

next
 

examine
 

its
 

properties.

3.2 Properties
 

of
 

State-transition
 

Matrice
It

 

is
 

easy
 

to
 

notice
 

that
 

the
 

state-transition
 

matrix
 

Φ (t)
 

is
 

critical
 

to
 

the
 

solution
 

of
 

the
 

linear
 

time-invariant
 

state
 

equation.Because
 

Φ
 

(t)
 

or
 

eAtcontains
 

the
 

complete
 

information
 

describing
 

the
 

system
 

dynamic,it
 

is
 

important
 

to
 

understand
 

its
 

properties.
Some

 

properties
 

of
 

the
 

state-transition
 

matrix
 

Φ(t)are
 

summarized
 

as
 

following.
Property

 

1.Φ(0)=eA0=I.
This

 

property
 

can
 

be
 

easily
 

proved
 

by
 

substituting
 

t=0
 

into
 

Eq.(3.7).

Property
 

2.Φ
·
(t)=AΦ(t)=Φ(t)A.

Proof 
 

Because
 

of
 

convergence
 

of
 

the
 

infinite
 

series
 

∑
∞

k=0
Aktk/k!,the

 

series
 

can
 

be
 

differentiated
 

term
 

by
 

term
 

to
 

give

Φ
·(t)=

d
dte

At=A+A2t+
A3t2

2! +…+
Aktk-1

(k-1)! +…

=A I+At+
A2t2

2! +…+
Ak-1tk-1

(k-1)! +…
􀭠
􀭡

􀪁
􀪁 􀭤

􀭥

􀪁
􀪁 =AeAt=AΦ(t)

= I+At+
A2t2

2! +…+
Ak-1tk-1

(k-1)! +…
􀭠
􀭡

􀪁
􀪁 􀭤

􀭥

􀪁
􀪁 A=eAtA=Φ(t)A

Property
 

3.Φ(t1±t2)=Φ(t1)Φ(±t2)=Φ(±t2)Φ(t1).
Proof 

 

By
 

substituting
 

t=t1±t2 into
 

Eq.(3.7),we
 

have

Φ(t1±t2)=e
A(t1±t2)=e

At1e±At2 =Φ(t1)Φ(±t2)=Φ(±t2)Φ(t1)
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where
 

Φ (t1),Φ (t2),Φ (t1±t2)are
 

the
 

state
 

transition
 

matrice
 

from
 

x(0)to
 

x(t1),

x(t2),x(t1±t2),respectively.This
 

property
 

shows
 

that
 

Φ(t1±t2)is
 

equal
 

to
 

the
 

product
 

of
 

Φ(t1)
 

and
 

Φ(±t2).

Property
 

4.Φ-1(t)=Φ(-t),Φ-1(-t)=Φ(t).
Proof 

 

By
 

means
 

of
 

Property
 

3
 

above
 

mentioned,we
 

have
Φ(t-t)=Φ(t)Φ(-t)=Φ(-t)Φ(t)=Φ(0)=I

Thus,the
 

Property
 

4
 

holds.
For

 

linear
 

time
 

invariant
 

system,x(t)=Φ(t)x(0)
 

holds
 

apparently,as
 

a
 

result,x(0)=
Φ-1(t)x(t)=Φ(-t)x(t)

 

holds
 

also.
Property

 

5.Φ(t2-t1)Φ(t1-t0)=Φ(t2-t0)=Φ(t1-t0)Φ(t2-t1).

Proof 
 

Φ(t2-t1)Φ(t1-t0)=e
A(t2-t1)e

A(t1-t0)=e
A(t2-t0)=Φ(t2-t0)

Property
 

6.Φ(t)  k=Φ(kt),k
 

is
 

positive
 

integer.
Proof 

  

Φ(t)  k=(eAt)k=ekAt=eA(kt)=Φ(kt)

Property
 

7.The
 

matrix
 

exponential
 

has
 

the
 

property
 

that
eA(s+t)=eAseAt

This
 

can
 

be
 

proved
 

as
 

follows:

eAseAt= ∑
∞

k=0

Aktk

k!  ∑
∞

k=0

Aksk

k!  =∑
∞

k=0
Ak ∑

∞

i=0

tisk-i

i!(k-i)!  
=∑

∞

k=0
Ak (t+s)k

k! =eA(t+s)

In
 

particular,if
 

s=-t,then
eAte-At=e-AteAt=eA(t-t)=I

Thus,the
 

inverse
 

of
 

eAt
 

is
 

e-At.Since
 

the
 

inverse
 

of
 

eAt
 

always
 

exists,eAt
 

is
 

nonsingular.
Property

 

8.e(A+B)t=eAteBt=eBteAt,if
 

and
 

only
 

if
 

AB=BA.
To

 

prove
 

this,note
 

that

e(A+B)t=I+(A+B)t+
1
2!
(A+B)2t2+

1
3!
(A+B)3t3+…

 

eAteBt= I+At+
1
2! A

2t2+
1
3! A

3t3+…  I+Bt+
1
2! B

2t2+
1
3! B

3t3+…  
   =I+(A+B)t+

1
2! A

2t2+ABt2+
1
2! B

2t2+
1
3! A

3t3+

    1
2! A

2Bt3+
1
2! AB

2t3+
1
3! B

3t3+…

Hence

e(A+B)t-eAteBt=
BA-AB
2! t2+

BA2+ABA+B2A+BAB-2A2B-2AB2

3! t3+…

The
 

difference
 

between
 

e(A+B)t
 

and
 

eAteBt
 

vanishes
 

if
 

A
 

and
 

B
 

commute.
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It
 

is
 

very
 

important
 

to
 

remember
 

that

e(A+B)t=eAteBt,
 

if
 

AB=BA

e(A+B)t ≠eAteBt,
 

if
 

AB ≠BA

3.3 Calculation
 

of
 

Matrix
 

Exponential
 

Function
In

 

solving
 

control
 

engineering
 

problems,it
 

often
 

becomes
 

necessary
 

to
 

compute
 

eAt.If
 

matrix
 

eAt
 

is
 

given
 

with
 

all
 

elements
 

in
 

numerical
 

values,MATLAB
 

provides
 

a
 

simple
 

way
 

to
 

compute
 

eAT,where
 

T
 

is
 

a
 

constant.
Aside

 

from
 

computational
 

methods,several
 

analytical
 

methods
 

are
 

available
 

for
 

the
 

computation
 

of
 

eAt.We
 

shall
 

present
 

four
 

methods
 

here.

3.3.1 Direct
 

calculation
 

approach

The
 

matrix
 

exponential
 

function
 

eAt
 

can
 

be
 

calculated
 

by
 

using
 

the
 

infinite
 

series
 

in
 

Eq.(3.7)
 

as
 

following

eAt=∑
∞

k=0

Aktk

k!
 

It
 

can
 

be
 

proved
 

that
 

the
 

matrix
 

exponential
 

function
 

of
 

an
 

n×n
 

matrix
 

eAt
 

converges
 

absolutely
 

for
 

all
 

finite
 

t.

3.3.2 Laplace
 

transform
 

approach
 

Let
 

us
 

first
 

consider
 

the
 

scalar
 

case:

x·=ax (3.14)

Taking
 

the
 

Laplace
 

transform
 

of
 

Eq.(3.14),we
 

obtain
sX(s)-x(0)=aX(s) (3.15)

where
 

X(s)=L(x(t)).
Solving

 

Eq.(3.15)
 

for
 

X(s)
 

gives

X(s)=
x(0)
s-a=(s-a)-1x(0)

The
 

inverse
 

Laplace
 

transform
 

of
 

this
 

last
 

equation
 

gives
 

the
 

solution
x(t)=eAtx(0)

The
 

forgoing
 

approach
 

to
 

the
 

solution
 

of
 

the
 

homogeneous
 

scalar
 

differential
 

equation
 

can
 

be
 

extended
 

to
 

the
 

solution
 

of
 

the
 

homogeneous
 

state
 

equation:

x·=Ax (3.16)

Taking
 

the
 

Laplace
 

transform
 

of
 

Eq.(3.16),we
 

obtain
sX(s)-x(0)=AX(s)

where
 

X(s)=L(x(t)).
Hence
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(sI-A)X(s)=x(0)

Premultiplying
 

both
 

sides
 

of
 

this
 

last
 

equation
 

by
 

(sI-A)-1,We
 

obtain

X(s)=(sI-A)-1x(0)

The
 

inverse
 

Laplace
 

transform
 

of
 

X(s)
 

gives
 

the
 

solution
 

x.Thus,

x(t)=L-1 (sI-A)-1  x(0) (3.17)

Note
 

that

(sI-A)-1=
I
s +

A
s2

+
A2

s3
+…

 

Hence,inverse
 

Laplace
 

transform
 

of
 

(sI-A)-1
 

gives
 

L-1 (sI-A)-1  =I+At+
A2t2

2! +
A3t3

3! +…=eAt
        

(3.18)

From
 

Eq.(3.17)
 

and
 

Eq.(3.18),the
 

solution
 

of
 

Eq.(3.16)
 

is
 

obtained
 

as
x(t)=eAtx(0)

 

  The
 

important
 

of
 

Eq.(3.18)
 

lies
 

in
 

the
 

fact
 

that
 

it
 

provides
 

a
 

convenient
 

means
 

for
 

finding
 

the
 

closed
 

solution
 

for
 

the
 

matrix
 

exponential
 

function.
In

 

brief,the
 

second
 

method
 

of
 

computing
 

eAt
 

uses
 

the
 

Laplace
 

transform
 

approach.

eAtcan
 

be
 

given
 

as
 

follows:

eAt=L-1 (sI-A)-1  
Thus,to

 

obtain
 

eAt,first
 

invert
 

the
 

matrix
 

(sI-A).This
 

results
 

in
 

a
 

matrix
 

whose
 

elements
 

are
 

rational
 

functions
 

of
 

s.Then
 

take
 

the
 

inverse
 

Laplace
 

transform
 

of
 

each
 

element
 

of
 

the
 

matrix.

Example
 

3.1 Calculate
 

the
 

state-transition
 

matrix
 

eAtif
 

A=
0 1
-2 -3
􀭠
􀭡

􀪁
􀪁􀪁 􀭤

􀭥

􀪁
􀪁􀪁 .

Solution.
 

To
 

find
 

the
 

state-transition
 

matrix,let
 

us
 

first
 

calculate
 

the
 

matrix
 

(sI-A)-1:

(sI-A)-1=
s -1
2 s+3
􀭠
􀭡

􀪁
􀪁􀪁 􀭤

􀭥

􀪁
􀪁􀪁

-1

=
adj(sI-A)
det(sI-A)

=
1

(s+1)(s+2)
s+3 1
-2 s
􀭠
􀭡

􀪁
􀪁􀪁 􀭤

􀭥

􀪁
􀪁􀪁 =

2
s+1-

1
s+2

1
s+1-

1
s+2

-
2

s+1+
2

s+2 -
1

s+1+
2

s+2

􀭠

􀭡

􀪁
􀪁
􀪁
􀪁
􀪁

􀭤

􀭥

􀪁
􀪁
􀪁
􀪁
􀪁

The
 

state-transition
 

matrix
 

is
 

the
 

inverse
 

Laplace
 

transform
 

of
 

(sI-A)-1,i.e.,

eAt=L-1 (sI-A)-1  =
2e-t-e-2t e-t-e-2t

-2e-t+2e-2t -e-t+2e-2t

􀭠

􀭡

􀪁
􀪁􀪁

􀭤

􀭥

􀪁
􀪁􀪁

3.3.3 Linear
 

transform
 

approach

For
 

a
 

given
 

square
 

matrix
 

A,there
 

exists
 

a
 

nonsingular
 

transform
 

matrix
 

P
 

such
 

that
 

􀭺A=P-1AP.Then
 

we
 

have
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e
􀭺At=eP

-1APt=I+P-1APt+
1
2!
(P-1AP)2t2+…+

1
k!

(P-1AP)ktk +…

=P-1I+At+
1
2! A

2t2+…+
1

k! A
ktk +…  P=P-1eAtP

Thus

eAt=Φ(t)=PeP
-1APtP-1

The
 

solution
 

of
 

P
 

can
 

be
 

obtained
 

by
 

following
 

equations

Api=λipi, i=1,2,…,n

P= p1 p2 … pn   
where

 

pi
 is

 

a
 

eigenvector
 

corresponding
 

eigenvalue
 

λi.

Case
 

1:
 

If
 

the
 

eigenvalues
 

λ1,λ2,…,λn
 of

 

the
 

matrix
 

A
 

are
 

distinct
 

(matrix
 

eAtcan
 

be
 

transformed
 

into
 

a
 

diagonal
 

form),thus
 

Φ (t)(or
 

eAt)
 

can
 

be
 

given
 

by
 

(contain
 

the
 

n
 

exponentials
 

e
λ1t,e

λ2t,…,e
λnt)

Φ(t)=PeP
-1APtP-1=P

e
λ1t 0

e
λ2t

⋱

0 e
λnt

􀭠

􀭡

􀪁
􀪁
􀪁
􀪁
􀪁
􀪁􀪁

􀭤

􀭥

􀪁
􀪁
􀪁
􀪁
􀪁
􀪁􀪁

P-1

where
 

P
 

is
 

a
 

diagonalizing
 

matrix
 

for
 

A.
Proof 

 

Since
 

P-1AP=

λ1 0

λ2
⋱

0 λn

􀭠

􀭡

􀪁
􀪁
􀪁
􀪁
􀪁
􀪁􀪁

􀭤

􀭥

􀪁
􀪁
􀪁
􀪁
􀪁
􀪁􀪁

We
 

have

eP
-1APt=

1 0

1

⋱

0 1

􀭠

􀭡

􀪁
􀪁
􀪁
􀪁
􀪁􀪁

􀭤

􀭥

􀪁
􀪁
􀪁
􀪁
􀪁􀪁

+

λ1 0

λ2
⋱

0 λn

􀭠

􀭡

􀪁
􀪁
􀪁
􀪁
􀪁
􀪁􀪁

􀭤

􀭥

􀪁
􀪁
􀪁
􀪁
􀪁
􀪁􀪁

t

 +

λ21 0

λ22
⋱

0 λ2n

􀭠

􀭡

􀪁
􀪁
􀪁
􀪁
􀪁
􀪁􀪁

􀭤

􀭥

􀪁
􀪁
􀪁
􀪁
􀪁
􀪁􀪁

t2

2! +

λ31 0

λ32
⋱

0 λ3n

􀭠

􀭡

􀪁
􀪁
􀪁
􀪁
􀪁
􀪁􀪁

􀭤

􀭥

􀪁
􀪁
􀪁
􀪁
􀪁
􀪁􀪁

t3

3! +…
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=

1+λ1t+
λ21t

2

2! +
λ31t

3

3! +…
 

0

1+λ2t+
λ22t

2

2! +
λ32t

3

3! +…
 

⋱

0 1+λnt+
λ2nt

2

2! +
λ3nt

3

3! +…

􀭠

􀭡

􀪁
􀪁
􀪁
􀪁
􀪁
􀪁
􀪁
􀪁
􀪁
􀪁
􀪁􀪁

􀭤

􀭥

􀪁
􀪁
􀪁
􀪁
􀪁
􀪁
􀪁
􀪁
􀪁
􀪁
􀪁􀪁

=

e
λ1t 0

e
λ2t

⋱

0 e
λnt

􀭠

􀭡

􀪁
􀪁
􀪁
􀪁
􀪁
􀪁
􀪁􀪁

􀭤

􀭥

􀪁
􀪁
􀪁
􀪁
􀪁
􀪁
􀪁􀪁

According
 

to
 

Φ(t)=PeP
-1APtP-1,we

 

can
 

obtain

Φ(t)=P

e
λ1t 0

e
λ2t

⋱

0 e
λnt

􀭠

􀭡

􀪁
􀪁
􀪁
􀪁
􀪁
􀪁
􀪁􀪁

􀭤

􀭥

􀪁
􀪁
􀪁
􀪁
􀪁
􀪁
􀪁􀪁

P-1
 

In
 

particular,if
 

the
 

matrix
 

A
 

is
 

diagonal,then

Φ(t)=eAt=

e
λ1t 0

e
λ2t

⋱

0 e
λnt

􀭠

􀭡

􀪁
􀪁
􀪁
􀪁
􀪁
􀪁
􀪁􀪁

􀭤

􀭥

􀪁
􀪁
􀪁
􀪁
􀪁
􀪁
􀪁􀪁

  

Particularly,if
 

the
 

matrix
 

A
 

is
 

a
 

companion
 

one
 

as
 

following

A=

0 1 0 … 0

0 0 1 … 0

︙ ︙ ︙ ⋱ ︙

0 0 0 … 1

-an -an-1 -an-2 … -a1

􀭠

􀭡

􀪁
􀪁
􀪁
􀪁
􀪁
􀪁
􀪁
􀪁􀪁

􀭤

􀭥

􀪁
􀪁
􀪁
􀪁
􀪁
􀪁
􀪁
􀪁􀪁

Then
 

linear
 

transformation
 

P
 

can
 

be
 

obtained
 

by
 

use
 

of
 

the
 

Vandermonde
 

matrix
 

as
 

following
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P=

1 1 … 1

λ1 λ2 … λn

λ21 λ22 … λ2n
︙ ︙ ⋱ ︙

λn-1
1 λn-1

2 … λn-1
n

􀭠

􀭡

􀪁
􀪁
􀪁
􀪁
􀪁
􀪁
􀪁
􀪁
􀪁

􀭤

􀭥

􀪁
􀪁
􀪁
􀪁
􀪁
􀪁
􀪁
􀪁
􀪁

where
 

λ1,λ2,…,λn
 are

 

distinct
 

eigenvalues
 

of
 

A.

Example
 

3.2 Again
 

consider
 

the
 

matrix
 

given
 

in
 

Example
 

3.1,i.e.A=
0 1

-2 -3

􀭠

􀭡

􀪁
􀪁􀪁 􀭤

􀭥

􀪁
􀪁􀪁 .

Calculate
 

the
 

state-transition
 

matrix
 

eAt
 

using
 

linear
 

transformation.

Solution.
 

Since
 

det(λI-A)=
λ -1

2 λ+3
=λ2+3λ+2=(λ+1)(λ+2)

two
 

distinct
 

eigenvalues
 

of
 

A
 

are
 

λ1=-1
 

and
 

λ2=-2.By
 

inspection,the
 

matrix
 

A
 

is
 

a
 

companion
 

one,and
 

linear
 

transformation
 

matrix
 

is
 

P=
1 1

λ1 λ2

􀭠

􀭡

􀪁
􀪁􀪁

􀭤

􀭥

􀪁
􀪁􀪁

The
 

inverse
 

of
 

P
 

is
 

given
 

by

P-1=
adjP
detP=

2 1

-1 -1

􀭠

􀭡

􀪁
􀪁􀪁 􀭤

􀭥

􀪁
􀪁􀪁

Hence
 

diagonalizing
 

matrix
 

for
 

A
 

is
 

now
 

obtained
 

as

P-1AP=
-1 0

0 -2

􀭠

􀭡

􀪁
􀪁􀪁 􀭤

􀭥

􀪁
􀪁􀪁

Thus
 

the
 

state-transition
 

matrix
 

is

eAt=PeP
-1APtP-1=

1 1

-1 -2

􀭠

􀭡

􀪁
􀪁􀪁 􀭤

􀭥

􀪁
􀪁􀪁 e

-t 0

0 e-2t

􀭠

􀭡

􀪁
􀪁􀪁

􀭤

􀭥

􀪁
􀪁􀪁

2 1

-1 -1

􀭠

􀭡

􀪁
􀪁􀪁 􀭤

􀭥

􀪁
􀪁􀪁

=
2e-t-e-2t e-t-e-2t

-2e-t+2e-2t -e-t+2e-2t

􀭠

􀭡

􀪁
􀪁􀪁

􀭤

􀭥

􀪁
􀪁􀪁

When
 

the
 

eigenvalues
 

of
 

A
 

are
 

not
 

all
 

distinct,there
 

are
 

two
 

cases
 

as
 

following.

Case
 

2:
 

When
 

a
 

matrix
 

A
 

has
 

multiple
 

eigenvalues,the
 

matrix
 

A
 

can
 

also
 

be
 

diagonalized
 

if
 

the
 

number
 

of
 

independent
 

eigenvectors
 

associated
 

with
 

each
 

multiple-eigenvalues
 

is
 

equal
 

to
 

the
 

multiplicity
 

of
 

the
 

eigenvalues.

Example
 

3.3 Diagonalize
 

the
 

following
 

matrix
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A=

1 0 -1

0 1 0

0 0 2

􀭠

􀭡

􀪁
􀪁
􀪁
􀪁

􀭤

􀭥

􀪁
􀪁
􀪁
􀪁

Solution.The
 

eigenvalues
 

of
 

A
 

are
 

λ1=λ2=1,λ3=2.The
 

eigenvectors
 

associated
 

with
 

λ1=1
 

can
 

be
 

found
 

by
 

solving
 

the
 

equation

(λ1I-A)pi=

0 0 1

0 0 0

0 0 -1

􀭠

􀭡

􀪁
􀪁
􀪁
􀪁

􀭤

􀭥

􀪁
􀪁
􀪁
􀪁 pi=0, i=1,2

Note
 

that
 

two
 

linearly
 

independent
 

eigenvectors
 

p1= 1 0 0  T
 

and
 

p2= 0 1 0  T
 

associated
 

with
 

λ1=λ2=1
 

can
 

be
 

found
 

for
 

this
 

equation.Solving
 

following
 

equation

(λ3I-A)p3=

1 0 1

0 1 0

0 0 0

􀭠

􀭡
􀪁
􀪁
􀪁
􀪁

􀭤

􀭥

􀪁
􀪁
􀪁
􀪁 p3=0

The
 

eigenvector
 

associated
 

with
 

λ3=2
 

can
 

be
 

found
 

as
 

p3= 1 0 -1  T.Hence
 

we
 

obtain
 

P= p1 p2 p3  =
1 0 1

0 1 0

0 0 -1

􀭠

􀭡

􀪁
􀪁
􀪁
􀪁

􀭤

􀭥

􀪁
􀪁
􀪁
􀪁

P-1=
adjP
detP=

1 0 1

0 1 0

0 0 -1

􀭠

􀭡

􀪁
􀪁
􀪁
􀪁

􀭤

􀭥

􀪁
􀪁
􀪁
􀪁

The
 

matrix
 

P-1AP
 

is
 

found
 

to
 

be

P-1AP=

1 0 0

0 1 0

0 0 2

􀭠

􀭡

􀪁
􀪁
􀪁
􀪁

􀭤

􀭥

􀪁
􀪁
􀪁
􀪁

In
 

this
 

example,the
 

matrix
 

having
 

repeated
 

eigenvalues
 

can
 

be
 

diagonalized.Generally,

however,it
 

is
 

not
 

always
 

possible
 

to
 

diagonalize
 

the
 

matrix
 

A
 

having
 

multiple-eigenvalues.

In
 

that
 

case
 

the
 

matrix
 

can
 

be
 

transformed
 

only
 

into
 

a
 

Jordan
 

form
 

by
 

use
 

of
 

a
 

linear
 

transformation.

Case
 

3:
 

When
 

a
 

matrix
 

A
 

has
 

multiple
 

eigenvalues,the
 

number
 

of
 

independent
 

eigenvectors
 

associated
 

with
 

multiple-eigenvalue
 

is
 

often
 

less
 

than
 

the
 

multiplicity
 

of
 

the
 

eigenvalue.In
 

this
 

case,the
 

matrix
 

A
 

cannot
 

be
 

diagonalized,but
 

it
 

can
 

be
 

transformed
 

into
 

a
 

Jordan
 

canonical
 

form.For
 

example,if
 

the
 

eigenvalues
 

of
 

A
 

are
 

λ1,λ1,λ1,λ4,λ5,…,λn

And
 

there
 

is
 

only
 

one
 

independent
 

eigenvector
 

associated
 

with
 

multiple
 

eigenvalue
 

of
 

order
 

3
 

at
 

λ1=1.Then
 

matrix
 

A
 

can
 

be
 

transformed
 

into
 

a
 

Jordan
 

canonical
 

form,and
 

eAt
 

can
 

be
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given
 

by

eAt=SeJtS-1

where

J=

λ1 1 0

λ1 1

λ1

λ4

⋱

λn

􀪋
􀪋
􀪋
􀪋
􀪋
􀪋
􀪋
􀪋
􀪋
􀪋
􀪋

􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋

􀭠

􀭡

􀪁
􀪁
􀪁
􀪁
􀪁
􀪁
􀪁
􀪁
􀪁
􀪁􀪁

􀭤

􀭥

􀪁
􀪁
􀪁
􀪁
􀪁
􀪁
􀪁
􀪁
􀪁
􀪁􀪁

Then
 

transformation
 

matrix
 

S
 

can
 

be
 

obtained
 

by
 

following
 

equations

Asi=λisi, i=4,5,…,n

s1= 1 λ1 λ21 … λn-1
1  T

S= s1
ds1
dλ1

1
2!
·
d2s1
dλ21

s4 s5 … sn
􀭠

􀭡
􀪁
􀪁􀪁

􀭤

􀭥

􀪁
􀪁􀪁

􀮠

􀮢

􀮡

􀪁
􀪁
􀪁􀪁

􀪁
􀪁
􀪁􀪁

Suppose
 

J
 

is
 

n×n
 

Jordan
 

canonical
 

form

J=

λ1 1 … 0

λ1 1 ︙

⋱ 1

λ1

􀭠

􀭡

􀪁
􀪁
􀪁
􀪁
􀪁
􀪁􀪁

􀭤

􀭥

􀪁
􀪁
􀪁
􀪁
􀪁
􀪁􀪁

Then
 

Φ(t)=eJt=

e
λ1t teλ1t t2eλ1t/2 … tn-1e

λ1t/(n-1)!

0 e
λ1t teλ1t … tn-2e

λ1t/(n-2)!

︙ ︙ ︙ ⋱ ︙

0 0 0 … teλ1t

0 0 0 … e
λ1t

􀭠

􀭡

􀪁
􀪁
􀪁
􀪁
􀪁
􀪁
􀪁
􀪁
􀪁􀪁

􀭤

􀭥

􀪁
􀪁
􀪁
􀪁
􀪁
􀪁
􀪁
􀪁
􀪁􀪁

From
 

the
 

above
 

equation,it
 

can
 

be
 

seen
 

that
 

Φ(t)contains,in
 

addition
 

to
 

the
 

exponentials
 

e
λ1t,terms

 

like
 

teλ1t,t2eλ1t,…,tn-1e
λ1t.

Case
 

4:
 

When
 

a
 

matrix
 

A
 

is

A=
σ ω

-ω σ
􀭠

􀭡

􀪁
􀪁􀪁 􀭤

􀭥

􀪁
􀪁􀪁

 

Its
 

eigenvalues
 

are
 

a
 

pair
 

of
 

conjugate
 

roots,i.e.
λ1,2=σ±jω
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Then

eAt=
cosωt sinωt
-sinωt cosωt
􀭠
􀭡

􀪁
􀪁 􀭤

􀭥

􀪁
􀪁

Example
 

3.4 Transform
 

the
 

following
 

matrix
 

A
 

into
 

a
 

Jordan
 

canonical
 

form.

A=
0 1 0
0 0 1
1 -3 3

􀭠

􀭡

􀪁
􀪁
􀪁􀪁

􀭤

􀭥

􀪁
􀪁
􀪁􀪁

Solution.The
 

characteristic
 

equation
 

of
 

the
 

matrix
 

A
 

is
∣λI-A∣=λ3-3λ2+3λ-1=(λ-1)3=0

Thus,matrix
 

A
 

has
 

a
 

multiple
 

eigenvalue
 

of
 

order
 

3
 

at
 

λ=1.It
 

can
 

be
 

shown
 

that
 

matrix
 

A
 

has
 

a
 

multiple
 

eigenvector
 

of
 

order
 

3.The
 

transformation
 

matrix
 

that
 

will
 

transform
 

matrix
 

A
 

into
 

a
 

Jordan
 

canonical
 

form
 

can
 

be
 

given
 

by

S=
1 0 0
1 1 0
1 2 1

􀭠

􀭡

􀪁
􀪁
􀪁􀪁
􀭤

􀭥

􀪁
􀪁
􀪁􀪁

The
 

inverse
 

of
 

matrix
 

S
 

is

S-1=
1 0 0
-1 1 0
1 -2 1

􀭠

􀭡

􀪁
􀪁
􀪁􀪁

􀭤

􀭥

􀪁
􀪁
􀪁􀪁

Then
 

it
 

can
 

be
 

seen
 

that

S-1AS=
1 0 0
-1 1 0
1 -2 1

􀭠

􀭡

􀪁
􀪁
􀪁􀪁

􀭤

􀭥

􀪁
􀪁
􀪁􀪁

0 1 0
0 0 1
1 -3 3

􀭠

􀭡

􀪁
􀪁
􀪁􀪁

􀭤

􀭥

􀪁
􀪁
􀪁􀪁

1 0 0
1 1 0
1 2 1

􀭠

􀭡

􀪁
􀪁
􀪁􀪁

􀭤

􀭥

􀪁
􀪁
􀪁􀪁 =

1 1 0
0 1 1
0 0 1

􀭠

􀭡

􀪁
􀪁
􀪁􀪁

􀭤

􀭥

􀪁
􀪁
􀪁􀪁 =J

Noting
 

that

eJt=

et tet 1
2t

2et

0 et tet

0 0 et

􀭠

􀭡

􀪁
􀪁
􀪁
􀪁
􀪁􀪁

􀭤

􀭥

􀪁
􀪁
􀪁
􀪁
􀪁􀪁

We
 

find

eAt=SeJtS-1=
1 0 0
1 1 0
1 2 1

􀭠

􀭡

􀪁
􀪁
􀪁􀪁

􀭤

􀭥

􀪁
􀪁
􀪁􀪁

et tet 1
2t

2et

0 et tet

0 0 et

􀭠

􀭡

􀪁
􀪁
􀪁
􀪁
􀪁􀪁

􀭤

􀭥

􀪁
􀪁
􀪁
􀪁
􀪁􀪁

1 0 0
-1 1 0
1 -2 1

􀭠

􀭡

􀪁
􀪁
􀪁􀪁

􀭤

􀭥

􀪁
􀪁
􀪁􀪁

=

et-tet+
1
2t

2et tet-t2et 1
2t

2et

1
2t

2et et-tet-t2et tet+
1
2t

2et

tet+
1
2t

2et -3tet-t2et et+2tet+
1
2t

2et

􀭠

􀭡

􀪁
􀪁
􀪁
􀪁
􀪁
􀪁
􀪁􀪁

􀭤

􀭥

􀪁
􀪁
􀪁
􀪁
􀪁
􀪁
􀪁􀪁
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3.3.4 Cayley-Hamilton
 

Theorem

Cayley-Hamilton
 

theorem
 

is
 

very
 

useful
 

in
 

proving
 

theorems
 

involving
 

matrix
 

equations.In
 

the
 

following,we
 

first
 

present
 

Cayley-Hamilton
 

theorem,then
 

give
 

methods
 

of
 

computing
 

eAt
 

based
 

on
 

Sylvester􀆳s
 

interpolation
 

as
 

for
 

two
 

cases.
Considering

 

an
 

n×n
 

matrix
 

A
 

and
 

its
 

characteristic
 

equation:

|λI-A|=λn +a1λ
n-1+…+an-1λ+an =0

1.
 

Cayley-Hamilton
 

theorem
Every

 

matrix
 

A
 

satisfies
 

its
 

own
 

characteristic
 

equation,or
 

that
An +a1A

n-1+…+an-1A+anI=0 (3.19)

Proof 
 

To
 

prove
 

this
 

theorem,note
 

that
 

adj(λI-A)is
 

a
 

polynomial
 

in
 

λ
 

of
 

degree
 

(n-1).
That

 

is,

adj(λI-A)=B1λ
n-1+B2λ

n-2+…+Bn-1λ+Bn
 

where
 

B1=I.Since
(λI-A)adj(λI-A)= adj(λI-A)  (λI-A)=∣λI-A|I

 

We
 

obtain
|λI-A|I=Iλn +a1Iλ

n-1+…+an-1Iλ+anI

=(λI-A)(B1λ
n-1+B2λ

n-2+…+Bn-1λ+Bn)

=(B1λ
n-1+B2λ

n-1+…+Bn-1λ+Bn)(λI-A)

From
 

this
 

equation,we
 

see
 

that
 

A
 

and
 

Bi(i=1,2,…,n)
 

commute.Hence,the
 

product
 

of
 

(λI-A)
 

and
 

adj(λI-A)becomes
 

zero
 

if
 

either
 

of
 

these
 

is
 

zero.If
 

A
 

is
 

substituted
 

for
 

λ
 

in
 

this
 

last
 

equation,then
 

clearly
 

∣λI-A ∣
 

becomes
 

zero.Hence,we
 

obtain
An +a1A

n-1+…+an-1A+anI=0
This

 

proves
 

the
 

Cayley-Hamilton
 

theorem,or
 

Eq.(3.19).

2.
 

Computation
 

of
 

eAt

The
 

following
 

method
 

of
 

computing
 

eAt
 

is
 

based
 

on
 

Sylvester􀆳s
 

interpolation
 

method.
We

 

shall
 

first
 

consider
 

the
 

case
 

where
 

the
 

roots
 

of
 

the
 

minimal
 

polynomial
 

of
 

A
 

are
 

distinct.Then
 

we
 

shall
 

deal
 

with
 

the
 

case
 

of
 

multiple
 

roots.
Case

 

1:
 

Minimal
 

polynomial
 

of
 

A
 

involves
 

only
 

distinct
 

roots.We
 

shall
 

assume
 

that
 

the
 

degree
 

of
 

the
 

minimal
 

polynomial
 

of
 

A
 

is
 

m.by
 

using
 

Sylvester􀆳s
 

interpolation
 

formula,it
 

can
 

be
 

shown
 

that
 

eAt
 

can
 

be
 

obtained
 

by
 

solving
 

the
 

following
 

determinant
 

equation:

1 λ1 λ21 … λm-1
1 e

λ1t

1 λ2 λ22 … λm-1
2 e

λ2t

︙ ︙ ︙ ⋱ ︙ ︙

1 λm-1 λ2m-1 … λm-1
m-1 e

λm-1t

1 λm λ2m … λm-1
m e

λmt

I A A2 … Am-1 eAt

=0
       

(3.20)
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By
 

solving
 

Eq.(3.20)
 

for
 

eAt,eAt
 

can
 

be
 

obtained
 

in
 

terms
 

of
 

the
 

Ak(k=0,1,…,m-1)
 

and
 

e
λit(i=1,2,…,m)(Eq.(3.20)

 

may
 

be
 

expanded,for
 

example,about
 

the
 

last
 

column).

Notice
 

that
 

solving
 

Eq.(3.20)
 

for
 

eAt
 

is
 

the
 

same
 

as
 

writing

eAt=α0(t)I+α1(t)A+α2(t)A
2+…+αm-1(t)A

m-1

And
 

determining
 

the
 

αk(t)(k=0,1,2,…,m-1)
 

by
 

solving
 

the
 

following
 

set
 

of
 

m
 

equations
 

for
 

the
 

αk(t):

α0(t)+α1(t)λ1+α2(t)λ
2
1+…+αm-1(t)λ

m-1
1 =e

λ1t

α0(t)+α1(t)λ2+α2(t)λ
2
2+…+αm-1(t)λ

m-1
2 =e

λ2t

 ︙

α0(t)+α1(t)λm +α2(t)λ
2
m +…+αm-1(t)λ

m-1
m =e

λmt
   

􀮠

􀮢

􀮡

􀪁
􀪁
􀪁􀪁
􀪁
􀪁
􀪁

(3.21)

If
 

A
 

is
 

an
 

n×n
 

matrix
 

and
 

has
 

distinct
 

eigenvalues,then
 

the
 

number
 

of
 

αk(t)􀆳s
 

to
 

be
 

determined
 

is
 

m=n.If
 

A
 

involves
 

multiple
 

eigenvalues
 

but
 

its
 

minimal
 

polynomial
 

has
 

only
 

simple
 

roots,however,then
 

the
 

number
 

m
 

of
 

αk(t)􀆳s
 

to
 

be
 

determined
 

is
 

less
 

than
 

n.

Case
 

2:
 

Minimal
 

polynomial
 

of
 

A
 

involves
 

multiple
 

roots.As
 

an
 

example,consider
 

the
 

case
 

where
 

the
 

minimal
 

polynomial
 

of
 

A
 

has
 

three
 

equal
 

roots
 

(λ1=λ2=λ3)
 

and
 

has
 

other
 

roots
 

(λ4,λ5,…,λm)that
 

are
 

all
 

distinct.By
 

using
 

Sylvester􀆳s
 

interpolation
 

formula,it
 

can
 

be
 

shown
 

that
 

eAtcan
 

be
 

obtained
 

from
 

the
 

following
 

determinant
 

equation:

0 0 1 3λ1 … (m-1)(m-2)λm-3
1 /2 t2eλ1t/2

0 1 2λ1 3λ21 … (m-1)λm-2
1 teλ1t

1 λ1 λ21 λ31 … λm-1
1 e

λ1t

1 λ4 λ24 λ34 … λm-1
4 e

λ4t

︙ ︙ ︙ ︙ ⋱ ︙ ︙

1 λm λ2m λ3m … λm-1
m e

λmt

I A A2 A3 … Am-1 eAt

=0
  

(3.22)

Eq.(3.22)
 

can
 

be
 

solved
 

for
 

eAt
 

by
 

expanding
 

it
 

about
 

the
 

last
 

column.

It
 

is
 

noticed
 

that,just
 

as
 

in
 

Case
 

1,solving
 

Eq.(3.22)
 

for
 

eAt
 

is
 

the
 

same
 

as
 

writing

eAt=α0(t)I+α1(t)A+α2(t)A
2+…+αm-1(t)A

m-1
   

And
 

determining
 

the
 

αk(t)(k=0,1,2,…,m-1)
 

by
 

solving
 

the
 

following
 

set
 

of
 

m
 

equations
 

for
 

the
 

αk(t):
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α2(t)+3α3(t)λ1+…+(m-1)(m-2)αm-1(t)λ
m-3
1 /2=t2e

λ1t/2

α1(t)+2α2(t)λ1+3α3(t)λ
2
1+…+(m-1)αm-1(t)λ

m-2
1 =te

λ1t

α0(t)I+α1(t)λ1+α2(t)λ
2
1+…+αm-1(t)λ

m-1
1 =e

λ1t

α0(t)I+α1(t)λ4+α2(t)λ
2
4+…+αm-1(t)λ

m-1
4 =e

λ4t

 ︙

α0(t)I+α1(t)λm +α2(t)λ
2
m +…+αm-1(t)λ

m-1
m =e

λmt
 

􀮠

􀮢

􀮡

􀪁
􀪁
􀪁
􀪁
􀪁􀪁
􀪁
􀪁
􀪁
􀪁
􀪁􀪁

(3.23)

  The
 

extension
 

to
 

other
 

cases
 

where,for
 

example,there
 

are
 

two
 

or
 

more
 

sets
 

of
 

multiple
 

roots
 

will
 

be
 

apparent.Note
 

that
 

if
 

the
 

minimal
 

polynomial
 

of
 

A
 

is
 

not
 

found
 

it
 

is
 

possible
 

to
 

substitute
 

the
 

characteristic
 

polynomial.The
 

number
 

of
 

computations
 

may,of
 

course,be
 

increased.

Example
 

3.5 Consider
 

the
 

matrix
 

A=
0 1

0 -2
􀭠
􀭡

􀪁
􀪁􀪁 􀭤
􀭥

􀪁
􀪁􀪁

 

From
 

Eq.(3.20),we
 

get

1 λ1 e
λ1t

1 λ2 e
λ2t

I A eAt

=0

Substitute
 

0
 

for
 

λ1 and
 

-2
 

for
 

λ2 in
 

this
 

last
 

equation,we
 

obtain

1 0 1

1 -2 e-2t

I A eAt
=0

Expanding
 

the
 

determinant,we
 

obtain

-2eAt+A+2I-Ae-2t=0

or

eAt=
1
2
(A+2I-Ae-2t)=

1
2
0 1

0 -2
􀭠
􀭡

􀪁
􀪁􀪁 􀭤

􀭥

􀪁
􀪁􀪁 +

2 0

0 2
􀭠
􀭡

􀪁
􀪁􀪁 􀭤

􀭥

􀪁
􀪁􀪁 -

0 1

0 -2
􀭠
􀭡

􀪁
􀪁􀪁 􀭤

􀭥

􀪁
􀪁􀪁 e-2t  

=
1 1
2
(1-e-2t)

0 e-2t

􀭠

􀭡

􀪁
􀪁
􀪁􀪁

􀭤

􀭥

􀪁
􀪁
􀪁􀪁

   

An
 

alternative
 

approach
 

is
 

to
 

use
 

Eq.(3.21).We
 

first
 

determine
 

α0(t)
 

and
 

α1(t)
 

from

α0(t)+α1(t)λ1=e
λ1t

α0(t)+α1(t)λ2=e
λ2t

Since
 

λ1=0
 

and
 

λ2=-2,the
 

last
 

two
 

equations
 

become



Chapter
 

3 Dynamic
 

Analysis
 

of
 

Control
 

System
 

in
 

State
 

Space 79   

α0(t)=1

α0(t)-2α1(t)=e-2t

Solving
 

for
 

α0(t)
 

and
 

α1(t)
 

gives

α0(t)=1, α1(t)=
1
2
(1-e-2t)

Then
 

eAt
 

can
 

be
 

written
 

as
 

eAt=α0(t)I+α1(t)A=I+
1
2
(1-e-2t)A=

1 1
2
(1-e-2t)

0 e-2t

􀭠

􀭡
􀪁
􀪁
􀪁􀪁

􀭤

􀭥

􀪁
􀪁
􀪁􀪁

3.4 Solution
 

of
 

Nonhomogeneous
 

State
 

Equations
In

 

this
 

section,the
 

complete
 

solution
 

of
 

nonhomogeneous
 

state
 

equation
 

can
 

be
 

derived
 

by
 

two
 

methods,respectively.

3.4.1 Direct
 

method
 

(or
 

integral
 

method)

We
 

shall
 

begin
 

considering
 

the
 

scalar
 

case
x·=ax+bu (3.24)

  Let
 

us
 

rewrite
 

Eq.(3.24)

x·-ax=bu
  Multiplying

 

both
 

sides
 

of
 

this
 

equation
 

by
 

e-at,we
 

obtain

e-at x·(t)-ax(t)  =
d
dte

-atx(t)  =e-atbu(t)

  Integrating
 

this
 

equation
 

between
 

0
 

and
 

t
 

gives

e-atx(t)=x(0)+∫
t

0
e-aτbu(τ)dτ

or

x(t)=eAtx(0)+eAt∫
t

0
e-aτbu(τ)dτ

The
 

first
 

term
 

on
 

the
 

right-hand
 

side
 

is
 

the
 

response
 

to
 

the
 

initial
 

condition
 

and
 

the
 

second
 

term
 

is
 

the
 

response
 

to
 

the
 

input
 

u(t).
Let

 

us
 

now
 

consider
 

the
 

nonhomogeneous
 

state
 

equation
 

described
 

by
x·=Ax+Bu (3.25)

where
 

x=n-vector;
 

u=r-vector;

A=n×n
 

constant
 

matrix;
 

B=n×r
 

constant
 

matrix.
 

By
 

writing
 

Eq.(3.25)
 

as
 

x·(t)-Ax(t)=Bu(t)

And
 

premultiplying
 

both
 

sides
 

of
 

this
 

equation
 

by
 

e-At,we
 

obtain
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e-At x·(t)-Ax(t)  =
d
dte

-Atx(t)  =e-AtBu(t)

Integrating
 

the
 

preceding
 

equation
 

between
 

0
 

and
 

t
 

gives

e-Atx(t)=x(0)+∫
t

0
e-AτBu(τ)dτ

or

x(t)=eAtx(0)+eAt∫
t

0
e-AτBu(τ)dτ

     

(3.26)

Eq.(3.26)
 

can
 

also
 

be
 

written
 

as

x(t)=Φ(t)x(0)+∫
t

0
Φ(t-τ)Bu(τ)dτ

        

(3.27)

where
 

Φ(t)=eAt.Eq.(3.26)
 

and
 

Eq.(3.27)
 

is
 

the
 

solution
 

of
 

Eq.(3.25).The
 

solution
 

x(t)
 

is
 

clearly
 

the
 

sum
 

of
 

a
 

term
 

consisting
 

of
 

the
 

transition
 

of
 

the
 

initial
 

state
 

and
 

a
 

term
 

arising
 

from
 

the
 

input
 

vector.
Thus

 

far
 

we
 

have
 

assumed
 

the
 

initial
 

time
 

to
 

be
 

zero.If,however,the
 

initial
 

time
 

is
 

given
 

by
 

t0 instead
 

of
 

0,then
 

the
 

solution
 

to
 

Eq.(3.27)
 

must
 

be
 

modified
 

to

x(t)=e
A(t-t0)x(t0)+∫

t

t0
eA(t-τ)Bu(τ)dτ

3.4.2 Laplace
 

Transform
 

Approach
 

The
 

solution
 

of
 

nonhomogeneous
 

state
 

equations
x·=Ax+Bu

can
 

also
 

be
 

obtained
 

by
 

the
 

Laplace
 

transform
 

approach.The
 

Laplace
 

transform
 

of
 

this
 

last
 

equation
 

yields
sX(s)-x(0)=AX(s)+BU(s)

or
(sI-A)X(s)=x(0)+BU(s)

 

Premultiplying
 

both
 

sides
 

of
 

this
 

last
 

equation
 

by
 

(sI-A)-1,we
 

obtain
X(s)=(sI-A)-1x(0)+(sI-A)-1BU(s)

Using
 

the
 

relationship
 

given
 

by
 

Φ (t)=eAt=L-1 (sI-A)-1  ,the
 

inverse
 

Laplace
 

transform
 

of
 

this
 

last
 

equation
 

can
 

be
 

obtained
 

by
 

use
 

of
 

the
 

convolution
 

integral
 

as
 

follows:

x(t)=eAtx(0)+∫
t

0
eA(t-τ)Bu(τ)dτ

Example
 

3.6 Find
 

the
 

solution
 

to
 

the
 

state
 

equation
 

given
 

by

x·(t)=
0 1
-2 -3
􀭠
􀭡

􀪁
􀪁 􀭤

􀭥

􀪁
􀪁 x(t)+

0
1
􀭠
􀭡

􀪁
􀪁 􀭤

􀭥

􀪁
􀪁 u(t), u(t)=1(t), x(0)=

x1(0)

x2(0)
􀭠

􀭡

􀪁
􀪁􀪁 􀭤

􀭥

􀪁
􀪁􀪁

Solution.
 

(1)
 

Using
 

integral
 

method.Since
 

u(t)=1(t),let
 

ξ=t-τ
 

yields
 

x(t)=Φ(t)x(0)+∫
t

0
Φ(t-τ)Bu(τ)dτ=Φ(t)x(0)-∫

0

t
Φ(ξ)Bdξ
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=Φ(t)x(0)+∫
t

0
Φ(τ)Bdτ

From
 

Example
 

3.2,we
 

get

Φ(t)=
2e-t-e-2t e-t-e-2t

-2e-t+2e-2t -e-t+2e-2t

􀭠

􀭡

􀪁
􀪁􀪁 􀭤

􀭥

􀪁
􀪁􀪁

Hence
 

∫
t

0
Φ(τ)Bdτ=∫

t

0

2e-τ -e-2τ e-τ -e-2τ

-2e-τ +2e-2τ -e-τ +2e-2τ

􀭠

􀭡

􀪁
􀪁􀪁 􀭤

􀭥

􀪁
􀪁􀪁 0

1
􀭠
􀭡

􀪁
􀪁 􀭤

􀭥

􀪁
􀪁 dτ=∫

t

0

e-τ -e-2τ

-e-τ +2e-2τ

􀭠

􀭡

􀪁
􀪁􀪁 􀭤

􀭥

􀪁
􀪁􀪁 dτ

     =
-e-τ +

1
2e

-2τ

e-τ -e-2τ

􀭠

􀭡

􀪁
􀪁
􀪁􀪁

􀭤

􀭥

􀪁
􀪁
􀪁􀪁

t

0

=
1
2-e-t+

1
2e

-2t

e-t-e-2t

􀭠

􀭡

􀪁
􀪁
􀪁􀪁

􀭤

􀭥

􀪁
􀪁
􀪁􀪁

x(t)=
2e-t-e-2t e-t-e-2t

-2e-t+2e-2t -e-t+2e-2t

􀭠

􀭡

􀪁
􀪁􀪁 􀭤

􀭥
􀪁
􀪁􀪁

x1(0)

x2(0)
􀭠

􀭡
􀪁
􀪁􀪁 􀭤

􀭥

􀪁
􀪁􀪁 +

1
2-e-t+

1
2e

-2t

e-t-e-2t

􀭠

􀭡

􀪁
􀪁
􀪁􀪁

􀭤

􀭥

􀪁
􀪁
􀪁􀪁

(2)
 

Using
 

Laplace
 

transform
 

method.Again,from
 

Example
 

3.2,we
 

get

(sI-A)-1=

2
s+1-

1
s+2

1
s+1-

1
s+2

-
2

s+1+
2

s+2 -
1

s+1+
2

s+2

􀭠

􀭡

􀪁
􀪁
􀪁
􀪁􀪁

􀭤

􀭥

􀪁
􀪁
􀪁
􀪁􀪁

eAt=L-1 (sI-A)-1  =
2e-t-e-2t e-t-e-2t

-2e-t+2e-2t -e-t+2e-2t

􀭠

􀭡

􀪁
􀪁􀪁 􀭤

􀭥

􀪁
􀪁􀪁

Thus
 

(sI-A)-1BU(s)=

2
s+1-

1
s+2

1
s+1-

1
s+2

-
2

s+1+
2

s+2 -
1

s+1+
2

s+2

􀭠

􀭡

􀪁
􀪁
􀪁
􀪁􀪁

􀭤

􀭥

􀪁
􀪁
􀪁
􀪁􀪁

0
1
􀭠
􀭡

􀪁
􀪁 􀭤

􀭥

􀪁
􀪁 ·1

s

=

1
s+1-

1
s+2

-
1

s+1+
2

s+2

􀭠

􀭡

􀪁
􀪁
􀪁
􀪁􀪁

􀭤

􀭥

􀪁
􀪁
􀪁
􀪁􀪁

·1
s

=

1
s(s+1)(s+2)

1
(s+1)(s+2)

􀭠

􀭡

􀪁
􀪁
􀪁
􀪁􀪁

􀭤

􀭥

􀪁
􀪁
􀪁
􀪁􀪁

=

1
2
·1
s -

1
s+1+

1
2
· 1
s+2

1
s+1-

1
s+2

􀭠

􀭡

􀪁
􀪁
􀪁
􀪁􀪁

􀭤

􀭥

􀪁
􀪁
􀪁
􀪁􀪁

Hence
 

x(t)=L-1 (sI-A)-1  x(0)+L-1 (sI-A)-1BU(s)  
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=
2e-t-e-2t e-t-e-2t

-2e-t+2e-2t -e-t+2e-2t

􀭠

􀭡

􀪁
􀪁􀪁 􀭤

􀭥

􀪁
􀪁􀪁

x1(0)

x2(0)
􀭠

􀭡

􀪁
􀪁􀪁 􀭤

􀭥

􀪁
􀪁􀪁 +

1
2-e-t+

1
2e

-2t

e-t-e-2t

􀭠

􀭡

􀪁
􀪁
􀪁􀪁

􀭤

􀭥
􀪁
􀪁
􀪁􀪁

3.5 Solution
 

of
 

Discrete
 

Nonhomogeneous
 

State
 

Equations

3.5.1 Discretization
 

of
 

linear
 

time-invariant
 

dynamic
 

equation
 

  Consider
 

linear
 

time-invariant
 

dynamic
 

equation
 

x·=Ax+Bu
y=Cx+Du

(3.28)

Its
 

solution
 

is

x(t)=Φ(t-t0)x(t0)+∫
t

t0
Φ(t-τ)Bu(τ)dτ

      

(3.29)

The
 

initial
 

condition
 

of
 

the
 

system
 

of
 

Eq.(3.28)
 

is
 

taken
 

as
x(t0)|t0=kT =x(kT)

where
 

T
 

is
 

sampling
 

time.
Eq.(3.29)

 

becomes
 

x(t)=Φ(t-kT)x(kT)+∫
t

kT
Φ(t-τ)Bu(τ)dτ

Taking
 

t=(k+1)T,we
 

obtain

x((k+1)T)=Φ(T)x(kT)+∫
(k+1)T

kT
Φ((k+1)T-τ)Bu(τ)dτ

   

(3.30)

when
 

kT≤t≤(k+1)T,we
 

have
 

u(t)=u(kT).
Then

x((k+1)T)=Φ(T)x(kT)+∫
(k+1)T

kT
Φ((k+1)T-τ)Bdτ􀭠

􀭡

􀪁􀪁 􀭤
􀭥

􀪁􀪁 u(kT)
 

(3.31)

Let
 

G=Φ(T)

H =∫
(k+1)T

kT
Φ((k+1)T-τ)Bdτ=∫

T

0
Φ(T-τ)Bdτ=∫

T

0
Φ(τ)Bdτ

 (3.32)

Substituting
 

Eq.(3.32)
 

into
 

Eq.(3.31)
 

and
 

omitting
 

T
 

yields
 

the
 

discretized
 

state
 

equation
x(k+1)=Gx(k)+Hu(k) (3.33)

As
 

an
 

algebraic
 

equation,the
 

discretized
 

output
 

equation
 

is
y(k)=Cx(k)+Du(k) (3.34)

  

Thus
 

state-space
 

representation
 

of
 

linear
 

time-invariant
 

discrete
 

system
 

is
x(k+1)=Gx(k)+Hu(k)

y(k)=Cx(k)+Du(k)
  

Example
 

3.7 Determine
 

the
 

discretization
 

of
 

the
 

following
 

continuous-time
 

state
 

equation.
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x·(t)=
0 1
-2 -3
􀭠
􀭡

􀪁
􀪁 􀭤

􀭥

􀪁
􀪁 x(t)+

0
1
􀭠
􀭡

􀪁
􀪁 􀭤

􀭥

􀪁
􀪁 u(t)

It
 

is
 

assumed
 

that
 

T=1s.
Solution.

 

From
 

Example
 

3.2,we
 

have

eAt=
2e-t-e-2t e-t-e-2t

-2e-t+2e-2t -e-t+2e-2t

􀭠

􀭡

􀪁
􀪁􀪁 􀭤

􀭥

􀪁
􀪁􀪁

Hence

G=Φ(T)=eAt|t=T =
2e-t-e-2t e-t-e-2t

-2e-t+2e-2t -e-t+2e-2t

􀭠

􀭡

􀪁
􀪁􀪁 􀭤

􀭥
􀪁
􀪁􀪁

t=1

=
0.6004 0.2325
-0.4651 -0.0972
􀭠
􀭡

􀪁
􀪁 􀭤

􀭥

􀪁
􀪁

 

H =∫
T

0
Φ(t)Bdt=∫

1

0

2e-t-e-2t e-t-e-2t

-2e-t+2e-2t -e-t+2e-2t

􀭠

􀭡

􀪁
􀪁􀪁 􀭤

􀭥

􀪁
􀪁􀪁 0

1
􀭠
􀭡

􀪁
􀪁 􀭤

􀭥

􀪁
􀪁 dt

 =∫
1

0

e-t-e-2t

-e-t+2e-2t

􀭠

􀭡

􀪁
􀪁􀪁 􀭤

􀭥

􀪁
􀪁􀪁 dt=

1
2-e-1+

1
2e

-2

e-1-2e-2

􀭠

􀭡

􀪁
􀪁
􀪁􀪁

􀭤

􀭥

􀪁
􀪁
􀪁􀪁 =
0.1998
0.2325
􀭠
􀭡

􀪁
􀪁 􀭤

􀭥

􀪁
􀪁

The
 

resulting
 

discretized
 

state
 

equation
 

is

x(k+1)=
0.6004 0.2325
-0.4651 -0.0972
􀭠
􀭡

􀪁
􀪁 􀭤

􀭥

􀪁
􀪁 x(k)+
0.1998
0.2325
􀭠
􀭡

􀪁
􀪁 􀭤

􀭥

􀪁
􀪁 u(k)

3.5.2 Approximation
 

If
 

the
 

instant
 

of
 

time
 

T
 

is
 

sufficient
 

small
 

compared
 

with
 

the
 

time
 

constants
 

of
 

the
 

system,then
 

we
 

have
G=Φ(T)=eAT =I+AT+… ≈I+AT

H =∫
T

0
eAtBdt=∫

T

0
eAtdt·B ≈∫

T

0
(I+At)dt·B ≈TB

Thus
 

Eq.(3.33)
 

can
 

be
 

rewritten
 

approximately
 

as
x(k+1)=(I+AT)x(k)+TBu(k)

3.5.3 Recursive
 

algorithms
 

of
 

the
 

discrete
 

state
 

equation

Consider
 

discrete
 

linear
 

time-invariant
 

state-space
 

Eq.(3.33),state
 

variable
 

x(k)(k=
1,2,…)

 

is
 

given
 

recursively
 

by
 

Eq.(3.33)

x(1)=Gx(0)+Hu(0)

x(2)=Gx(1)+Hu(1)=G2x(0)+GHu(0)+Hu(1)

x(3)=Gx(2)+Hu(2)=G3x(0)+G2Hu(0)+GHu(1)+Hu(2)

   ︙

x(k)=Gx(k-1)+Hu(k-1)

=Gkx(0)+∑
k-1

i=0
Gk-1-iHu(i)

     

(3.35)

Substituting
 

Eq.(3.35)
 

into
 

Eq.(3.34)
 

yields
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y(k)=Cx(k)+Du(k)

=CGkx(0)+C∑
k-1

i=0
Gk-1-iHu(i)+Du(k)

      

(3.36)

  The
 

solution
 

x(k)
 

is
 

clearly
 

the
 

sum
 

of
 

a
 

term
 

consisting
 

of
 

the
 

transition
 

of
 

the
 

initial
 

state
 

and
 

a
 

term
 

arising
 

from
 

the
 

input
 

vector
 

(In
 

other
 

words,the
 

solution
 

consists
 

of
 

zero
 

input
 

response
 

plus
 

zero
 

state
 

response).On
 

the
 

other
 

hand,it
 

can
 

be
 

seen
 

from
 

Eq.(3.35)
 

that
 

as
 

for
 

the
 

state
 

response
 

to
 

control
 

input,there
 

is
 

at
 

least
 

one-step
 

delay,

which
 

is
 

essential
 

characteristics
 

of
 

discrete
 

system.
Define

 

state-transition
 

matrix
 

of
 

discrete
 

system
 

as
Φ(k)=Gk

 

Be
 

similar
 

to
 

the
 

state-transition
 

matrix
 

of
 

continuous
 

system,the
 

state-transition
 

matrix
 

of
 

discrete
 

system
 

have
 

following
 

properties:

Φ(k+1)=GΦ(k)

Φ(0)=I

Φ-1(k)=Φ(-k)

Φ(k-k2)=Φ(k-k1)Φ(k1-k2), k>k1>k2

3.5.4 Z
 

transform
 

approach
 

to
 

the
 

solution
 

of
 

the
 

discrete
 

state
 

equation

The
 

Z-transform
 

of
 

Eq.(3.33)
 

yields
zX(z)-zx(0)=GX(z)+HU(z)

or
(zI-G)X(z)=zx(0)+HU(z)

Premultiplying
 

both
 

sides
 

of
 

above
 

equation
 

by
 

(zI-G)-1,we
 

obtain
X(z)=(zI-G)-1zx(0)+(zI-G)-1HU(z)

The
 

inverse
 

Z
 

transform
 

of
 

this
 

last
 

equation
 

yields
x(k)=Z-1 (zI-G)-1z  x(0)+Z-1 (zI-G)-1HU(z)  

    

(3.37)

Comparing
 

Eq.(3.35)
 

with
 

Eq.(3.37)
 

yields
Φ(k)=Gk =Z-1 (zI-G)-1z  

         

(3.38)

3.6 Computation
 

of
 

Control
 

System
 

Response
 

with
 

MATLAB

3.6.1 Response
 

to
 

initial
 

condition
 

  Consider
 

the
 

system
 

defined
 

by
x·=Ax, x(0)=x0         (3.39)

y=Cx (3.40)

Take
 

Laplace
 

transforms
 

of
 

both
 

sides
 

of
 

Eq.(3.39):

sX(s)-x(0)=AX(s) (3.41)

Eq.(3.41)
 

can
 

be
 

rewritten
 

as
sX(s)=AX(s)+x(0)

         

(3.42)
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Taking
 

the
 

inverse
 

Laplace
 

transforms
 

of
 

Eq.(3.42),we
 

obtain
x·=Ax+x(0)δ(t) (3.43)

Now
 

define
z·=x (3.44)

             

Eq.(3.43)
 

can
 

be
 

rewritten
 

as
z̈=Az·+x(0)δ(t) (3.45)

Integrating
 

Eq.(3.45)
 

with
 

respect
 

to
 

t,we
 

obtain
z·=Az+x(0)1(t)=Az+Bu (3.46)

where
B=x(0), u=1(t)

From
 

Eq.(3.44),the
 

state
 

x(t)
 

is
 

given
 

by
 

z·(t),thus
x=z·=Az+Bu (3.47)

The
 

solution
 

of
 

Eq.(3.46)
 

and
 

Eq.(3.47)
 

gives
 

the
 

response
 

to
 

the
 

initial
 

condition.
Summarizing,the

 

response
 

of
 

Eq.(3.39)
 

to
 

the
 

initial
 

condition
 

x(0)
 

is
 

obtained
 

by
 

solving
 

the
 

state-space
 

equations
z·=Az+Bu
x=Az+Bu

where
B=x(0), u=1(t)

Noting
 

that
 

x=z·,we
 

can
 

write
 

Eq.(3.40)
 

as

y=Cz· (3.48)

Substituting
 

Eq.(3.47)
 

into
 

Eq.(3.48),we
 

obtain

y=C(Az+Bu)=CAz+CBu (3.49)
  

The
 

solution
 

of
 

Eq.(3.47)
 

and
 

Eq.(3.48)
 

gives
 

the
 

response
 

of
 

the
 

system
 

to
 

a
 

given
 

initial
 

condition.MATLAB
 

commands
 

to
 

obtain
 

the
 

response
 

curves
 

(output
 

curves
 

y1
 

versus
 

t,y2
 

versus
 

t,…,ym
 

versus
 

t)
 

are
 

as
 

follows:

y,z,t  
 

=
 

step(A,B,C*A,C*B,1,t);

y1= 1
 

0
 

0
 

…
 

0  *
 

y';

y2= 0
 

1
 

0
 

…
 

0  *
 

y';

︙

ym= 0
 

0
 

0
 

…
 

1  *
 

y';

plot(t,y1,t,y2,…,t,ym)

Example
 

3.8 Obtain
 

the
 

response
 

of
 

the
 

following
 

system
 

subjected
 

to
 

the
 

given
 

initial
 

condition:

x·1

x·2

􀭠

􀭡

􀪁
􀪁
􀪁

􀭤

􀭥

􀪁
􀪁
􀪁 =

0 1

-10 -5
􀭠
􀭡

􀪁
􀪁􀪁 􀭤

􀭥

􀪁
􀪁􀪁 x1

x2

􀭠

􀭡

􀪁
􀪁􀪁

􀭤

􀭥

􀪁
􀪁􀪁 , 

x1(0)

x2(0)
􀭠

􀭡

􀪁
􀪁􀪁

􀭤

􀭥

􀪁
􀪁􀪁 =

2

1
􀭠
􀭡

􀪁
􀪁􀪁 􀭤

􀭥

􀪁
􀪁􀪁



86    现代控制理论基础(英文版)

or
x·=Ax, x(0)=x0

Obtaining
 

the
 

response
 

of
 

the
 

system
 

to
 

the
 

given
 

initial
 

condition
 

becomes
 

that
 

of
 

solving
 

the
 

unit-step
 

response
 

of
 

the
 

system
z·=Az+Bu
x=Az+Bu

where
B=x(0), u=1(t)

A
 

possible
 

MATLAB
 

program
 

for
 

obtaining
 

the
 

response
 

is
 

shown
 

in
 

MATLAB
 

Program
 

3.1.The
 

resulting
 

response
 

curves
 

are
 

plotted
 

in
 

Fig.3.2.

3.6.2 Obtaining
 

the
 

response
 

to
 

an
 

initial
 

condition
 

by
 

use
 

of
 

the
 

command
 

   initial

  If
 

the
 

system
 

is
 

given
 

in
 

state-space
 

form,then
 

the
 

command
initial(A,B,C,D,initial

 

condition  ,t)

will
 

produce
 

the
 

response
 

to
 

the
 

initial
 

condition.
Suppose

 

that
 

we
 

have
 

the
 

system
 

defined
 

by
x·=Ax+Bu, x(0)=x0
y=Cx+Du

where

A=
0 1

-10 -5
􀭠
􀭡

􀪁
􀪁 􀭤

􀭥

􀪁
􀪁 , B=

0
0
􀭠
􀭡

􀪁
􀪁 􀭤

􀭥

􀪁
􀪁 , C= 0 0  , D=0

x0=
2
1
􀭠
􀭡

􀪁
􀪁 􀭤

􀭥

􀪁
􀪁

Then
 

the
 

command
 

initial
 

can
 

be
 

used
 

as
 

shown
 

in
 

MATLAB
 

Program
 

3.2
 

to
 

obtain
 

the
 

response
 

to
 

the
 

initial
 

condition.The
 

response
 

curves
 

x1(t
 

)
 

and
 

x2(t
 

)
 

are
 

shown
 

in
 

Fig.3.3
 

and
 

are
 

the
 

same
 

as
 

those
 

shown
 

in
 

Fig.3.2.

Fig.3.2 Response
 

of
 

system
 

in
 

Example
 

3.8
 

to
 

initial
 

condition
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Fig.3.3 Response
 

curves
 

to
 

initial
 

condition

MATLAB
 

Program
 

3.1

t=0:0.01:3;
A=[0 1;-10 -5];
B=[2;1];
[x,z,t]

 

=step(A,B,A,B,1,t);
x1= 1 0  *

 

x';
x2= 0 1  

 

*
 

x';
plot(t,x1,'x',t,x2,'- ')
grid
title('Response

 

to
 

Initial
 

Condition')
xlabel('t

 

Sec');
ylabel('State

 

Variables
 

x_1
 

and
 

x_2');
gtext('x_1');
 

gtext('x_2');

MATLAB
 

Program
 

3.2

t=0:0.05:3;
A=[0 1;-10 -5];
B=[0;0];
C=[0 0];
D=[0];
[y,x]=initial(A,B,C,D,[2;1],t);
x1= 1 0  *

 

x';
x2= 0 1  *

 

x';
plot(t,x1,'o',t,x2,'x');
grid
title('Response

 

to
 

Initial
 

Condition');
xlabel('t

 

Sec');
ylabel('State

 

Variables
 

x_1
 

and
 

x_2');
gtext('x_1');
 

gtext('x_2');



88    现代控制理论基础(英文版)

Example
 

3.9 Consider
 

the
 

following
 

system
 

that
 

is
 

subjected
 

to
 

the
 

given
 

initial
 

condition.
y…+8ÿ+17y·+10y=0

y(0)=2, y·(0)=1, ÿ(0)=0.5
Assume

 

that
 

no
 

external
 

forcing
 

function
 

is
 

present,and
 

obtain
 

the
 

response
 

y(t)
 

to
 

the
 

initial
 

condition.
By

 

defining
 

the
 

state
 

variables
 

as
x1=y

x2=y·

x3=ÿ
we

 

obtain
 

the
 

following
 

state-space
 

representation
 

of
 

the
 

system:

x·1

x·2

x·3

􀭠

􀭡

􀪁
􀪁
􀪁
􀪁􀪁

􀭤

􀭥

􀪁
􀪁
􀪁
􀪁􀪁

=
0 1 0
0 0 1

-10 -17 -8

􀭠

􀭡

􀪁
􀪁
􀪁􀪁

􀭤

􀭥

􀪁
􀪁
􀪁􀪁
x1
x2
x3

􀭠

􀭡

􀪁
􀪁
􀪁
􀪁􀪁
􀭤

􀭥

􀪁
􀪁
􀪁
􀪁􀪁

,
x1(0)

x2(0)

x3(0)

􀭠

􀭡

􀪁
􀪁
􀪁
􀪁􀪁

􀭤

􀭥

􀪁
􀪁
􀪁
􀪁􀪁 =

2
1
0.5

􀭠

􀭡

􀪁
􀪁
􀪁􀪁

􀭤

􀭥

􀪁
􀪁
􀪁􀪁

y= 1 0 0  

x1
x2
x3

􀭠

􀭡

􀪁
􀪁
􀪁
􀪁􀪁

􀭤

􀭥

􀪁
􀪁
􀪁
􀪁􀪁

A
 

possible
 

MATLAB
 

program
 

to
 

obtain
 

the
 

response
 

y
 

(t)
 

is
 

given
 

in
 

MATLAB
 

Program
 

3.3.The
 

resulting
 

response
 

curve
 

is
 

shown
 

in
 

Fig.3.4.

MATLAB
 

Program
 

3.3

t=0:0.05:10;
A= 0 1 0;0 0 1;-10 -17 -8  ;
B= 0;0;0  ;
C= 1 0 0  ;
D= 0  ;
y=initial(A,B,C,D,2;1;0.5  ,t);
plot(t,y);
grid
title('Response

 

to
 

Initial
 

Condition')
xlabel('t

 

(sec)');
ylabel('Output

 

y');

Exercises
 

3.1 If
 

matrix
 

A
 

is

A=

0 1 0 … 0
0 0 1 … 0
︙ ︙ ︙ ⋱ ︙

-an -an-1 -an-2 … a1

􀭠

􀭡

􀪁
􀪁
􀪁
􀪁
􀪁􀪁

􀭤

􀭥

􀪁
􀪁
􀪁
􀪁
􀪁􀪁

  verify
 

that
 

the
 

characteristic
 

polynomial
 

of
 

A
 

(Fig.3.4)
 

is



Chapter
 

3 Dynamic
 

Analysis
 

of
 

Control
 

System
 

in
 

State
 

Space 89   

Fig.3.4 Response
 

y(t)
 

to
 

the
 

given
 

initial
 

condition

Δ(λ)=det(λI-A)=λn +a1λ
n-1+a2λ

n-2+…+an-1λ+an

  If
 

λi
 is

 

an
 

eigenvalue
 

of
 

A,try
 

to
 

verify
 

that
 

1,λi,λ2i, …,λn-1
i  T

 

is
 

the
 

eigenvectors
 

corresponding
 

to
 

λi.

3.2 Given
 

A=
1 1 0
0 0 1
0 0 1

􀭠

􀭡

􀪁
􀪁
􀪁􀪁

􀭤

􀭥
􀪁
􀪁
􀪁􀪁 ,try

 

to
 

get
 

A101
 

and
 

eAt.

3.3 Given
 

A,B
 

are
 

constant
 

square
 

matrice,and
 

AB=BA
 

Verify
 

that
 

the
 

state
 

transition
 

matrix
 

of
 

x·=e-AtBeAtx
 

is
 

Φ(t,t0)=e
-Ate

(A+B)(t-t0)e
At0.

3.4 Calculate
 

the
 

resolvent
 

matrice,i.e.,(sI-A)-1,and
 

the
 

state
 

transition
 

matrice
 

for
 

the
 

following
 

matrice.

(1)
 

A=
0 1
0 0
􀭠
􀭡

􀪁
􀪁 􀭤

􀭥

􀪁
􀪁

(2)
 

A=
0 1
-1 0
􀭠
􀭡

􀪁
􀪁 􀭤

􀭥

􀪁
􀪁

(3)
 

A=
1 0 0
0 1 0
0 1 2

􀭠

􀭡

􀪁
􀪁
􀪁􀪁

􀭤

􀭥

􀪁
􀪁
􀪁􀪁

3.5 Transform
 

the
 

representations
 

of
 

the
 

following
 

systems
 

into
 

the
 

Jordan
 

canonical
 

form.

(1)
 

A=
-2 1
-17 -4
􀭠
􀭡

􀪁
􀪁 􀭤

􀭥

􀪁
􀪁 , b=

4
8
􀭠
􀭡

􀪁
􀪁 􀭤

􀭥

􀪁
􀪁 , c= 0 1  

(2)
 

A=
0 1 0
0 0 1
2 3 0

􀭠

􀭡

􀪁
􀪁
􀪁􀪁

􀭤

􀭥

􀪁
􀪁
􀪁􀪁 , b=

0
0
9

􀭠

􀭡

􀪁
􀪁
􀪁􀪁

􀭤

􀭥

􀪁
􀪁
􀪁􀪁 , c= 1 0 0  

(3)
 

A=
-2 2 -1
0 -2 0
1 -4 0

􀭠

􀭡

􀪁
􀪁
􀪁􀪁

􀭤

􀭥

􀪁
􀪁
􀪁􀪁 , b=

0
0
16

􀭠

􀭡

􀪁
􀪁
􀪁􀪁

􀭤

􀭥

􀪁
􀪁
􀪁􀪁 , c= 1 0 0  
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(4)
 

A=
0 1 0
3 0 2
-12 -7 -6

􀭠

􀭡

􀪁
􀪁
􀪁􀪁

􀭤

􀭥

􀪁
􀪁
􀪁􀪁 , B=

2 3
1 5
7 1

􀭠

􀭡

􀪁
􀪁
􀪁􀪁

􀭤

􀭥

􀪁
􀪁
􀪁􀪁 , C=

1 0 0
0 1 0
􀭠
􀭡

􀪁
􀪁 􀭤

􀭥

􀪁
􀪁

3.6 (1)
 

Determine
 

the
 

characteristic
 

equation,eigenvalues,and
 

eigenvectors
 

of
 

the
 

matrix
 

A=

0 1 0 0
0 0 1 0
0 0 0 1
1 0 0 0

􀭠

􀭡

􀪁
􀪁
􀪁
􀪁
􀪁􀪁

􀭤

􀭥

􀪁
􀪁
􀪁
􀪁
􀪁􀪁

  (2)
 

Transform
 

the
 

matrix
 

given
 

in
 

(1)
 

into
 

the
 

diagonal
 

or
 

Jordan
 

form,finding
 

the
 

transformation
 

matrix.
3.7 A

 

linear
 

system
 

has
 

the
 

following
 

state
 

transition
 

matrix

Φ(t)=
2e-t-e-2t -2e-t+2e-2t

e-t-e-2t -e-t+2e-2t

􀭠

􀭡

􀪁
􀪁􀪁 􀭤

􀭥

􀪁
􀪁􀪁

Determine
 

the
 

system
 

matrix
 

A
 

of
 

the
 

system.
3.8 Check

 

whether
 

the
 

following
 

matrice
 

satisfy
 

the
 

conditions
 

for
 

the
 

state
 

transition
 

matrix.If
 

any
 

matrix
 

satisfies
 

the
 

condition,find
 

the
 

corresponding
 

system
 

matrix
 

A.

(1)
 

Φ(t)=
2e-t-e-2t -2e-t+2e-2t

e-t-e-2t -e-t+2e-2t
􀭠

􀭡
􀪁
􀪁􀪁 􀭤

􀭥

􀪁
􀪁􀪁

(2)
 

Φ(t)=
1
1-2e-2t

2

0 e-2t

􀭠

􀭡

􀪁
􀪁
􀪁􀪁

􀭤

􀭥

􀪁
􀪁
􀪁􀪁

(3)
 

Φ(t)=
1 0 0
0 sint cost
0 -cost sint

􀭠

􀭡

􀪁
􀪁
􀪁􀪁

􀭤

􀭥

􀪁
􀪁
􀪁􀪁

(4)
 

Φ(t)=
e-t 0 0

0 e-5t e-5t

0 e-t e-5t

􀭠

􀭡

􀪁
􀪁
􀪁
􀪁􀪁

􀭤

􀭥

􀪁
􀪁
􀪁
􀪁􀪁

3.9 The
 

responses
 

of
 

a
 

second-order
 

system,x· =Ax,to
 

two
 

different
 

initial
 

states
 

are

x(t)=
e-3t

-e-3t

􀭠

􀭡

􀪁
􀪁􀪁 􀭤

􀭥

􀪁
􀪁􀪁

 

when
 

x(0)=
1
-4
􀭠
􀭡

􀪁
􀪁 􀭤

􀭥

􀪁
􀪁

x(t)=
e-2t

-e-2t

􀭠

􀭡

􀪁
􀪁􀪁 􀭤

􀭥

􀪁
􀪁􀪁

 

when
 

x(0)=
2
-1
􀭠
􀭡

􀪁
􀪁 􀭤

􀭥

􀪁
􀪁

respectively.Determine
 

the
 

system
 

matrix
 

A.
3.10 Consider

 

the
 

state
 

equation
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x·=
1 0
1 1
􀭠
􀭡

􀪁
􀪁 􀭤

􀭥

􀪁
􀪁 x+

1
1
􀭠
􀭡

􀪁
􀪁 􀭤

􀭥

􀪁
􀪁 u

Determine
 

the
 

state
 

vector
 

x(t)
 

for
 

t
 

≥0
 

when
 

the
 

input
 

u(t)=1(t),using
 

two
 

different
 

methods.It
 

is
 

assumed
 

that
 

the
 

initial
 

state
 

is
 

x(0)= 1 0  T.
3.11 For

 

a
 

given
 

system
 

Φ(t)=
e-t 0

0 e-2t

􀭠

􀭡

􀪁
􀪁􀪁 􀭤

􀭥

􀪁
􀪁􀪁 , b=

1
1
􀭠
􀭡

􀪁
􀪁 􀭤

􀭥

􀪁
􀪁 , x(0)=

2
3
􀭠
􀭡

􀪁
􀪁 􀭤

􀭥
􀪁
􀪁

try
 

to
 

compute
 

the
 

state
 

response
 

x(t)
 

when
 

u(t)=1t  .
3.12 Given

 

a
 

state
 

equation
 

of
 

a
 

population
 

emigration
 

as
x1(k+1)

x2(k+1)
􀭠

􀭡

􀪁
􀪁􀪁 􀭤

􀭥

􀪁
􀪁􀪁 =

1.01×(1-0.04) 1.01×0.02
1.01×0.04 1.01×(1-0.02)

􀭠
􀭡

􀪁
􀪁 􀭤

􀭥

􀪁
􀪁 x1(k)

x2(k)
􀭠

􀭡

􀪁
􀪁􀪁 􀭤

􀭥

􀪁
􀪁􀪁

 
 

x1(0)=10
7, x2(0)=9×107

Where
 

x1 represents
 

the
 

city
 

population
 

and
 

x2 represents
 

the
 

country
 

population.If
 

k
 

=
 

0
 

represents
 

year
 

1992,try
 

to
 

analyze
 

the
 

population
 

distributing
 

of
 

the
 

country
 

and
 

city
 

from
 

1992
 

to
 

2010,and
 

plot
 

the
 

corresponding
 

distribution
 

curve.
3.13 A

 

discrete
 

system
 

is
 

described
 

by
 

the
 

difference
 

equation.
y(k+2)+3y(k+1)+2y(k)=2u(k+1)+3u(k)

  (1)
 

Determine
 

the
 

state-space
 

representation
 

in
 

controllable
 

canonical
 

form.
(2)

 

Obtain
 

the
 

system
 

response
 

when
 

the
 

input

u(k)=
1, k=0,1
0,k≠0,1 

It
 

is
 

assumed
 

that
 

the
 

initial
 

state
 

is
 

zero.
3.14 Discretize

 

the
 

following
 

continuous
 

system

x·=
0 1
0 2
􀭠
􀭡

􀪁
􀪁 􀭤

􀭥

􀪁
􀪁 x+

0
1
􀭠
􀭡

􀪁
􀪁 􀭤

􀭥

􀪁
􀪁 u

y= 1 0  x
It

 

is
 

assumed
 

that
 

the
 

sampling
 

period
 

is
 

T=1s.


