
1.1 引言

和地球46亿年的历史相比,人类文明历史的万年时间不过是短暂的一瞬间。
地球的地质作用及地质对象和人类命运息息相关,一方面,地质作用为人类孕育了

丰富的矿产资源,同时也是地震和火山爆发等自然灾害的驱动因素;
 

另一方面,人
类活动,如矿产资源开采、工程建造等正在改变地球的生态环境和地下空间[1]。当

前,人类社会发展正快速步入数字时代,但土木、水利等工程建造活动的数字化转

型相对滞后。工程地质条件是决定土木、水利等工程建造活动设计与施工方案的

根本,因此,建立精细化的三维地质模型是实现岩土与地下工程数字化的一项重要

任务。为了建立精细化的地质模型,需要对地层界面和岩土参数的空间分布及其

不确定性进行准确表征。
精细化的三维地质建模必须准确再现地质构造(断层、褶皱)、岩层或地层类别

(花岗岩、砂土、粉土)、岩土体性质(密度、孔隙率、饱和度等)、地下水位等信息。地

质建模的复杂性和地质结构的类型有关。长期的地壳运动形成了3种典型的地质

构造,分别为倾斜岩层构造、断层构造和褶皱构造,如图1-1所示。倾斜岩层构造

是最简单的地质结构,其岩层界面一般呈倾斜状态(水平岩层很少见),可以采用插

值技术进行地质建模,如多项式插值及克里金方法。断层构造和褶皱构造的地质

建模较为复杂,须采用特殊的结构单元[1-2],并考虑多个岩层界面之间的相互关

系,包括岩层在水平方向的不连续性、岩层之间相互交叉或倒置(如逆断层可能导

致在相同的钻探位置多次遇到同一地层界面),简单的插值方法已无法适用[3]。同

时,复杂的地质作用造成了岩土材料的空间变异性,不同岩层间岩土体的密度、孔
隙率、渗透性、抗剪强度和压缩性存在显著差异,同一岩层内的岩土体亦呈现较强

的各向异性和非均质性。例如,河流沉积形成的砂岩与湖泊沉积形成的砂岩的孔

隙率和渗透率大相径庭,这是由于不同沉积相的沉积环境和水流强度不同,导致砂

岩颗粒的几何形态、泥砂比率和沉积密度不同[4]。断层不仅会改变岩层的几何布

局,如岩层错位,还会改变岩石的物理力学特性,如由于剪切作用,断层构造附近的

岩石密度、孔隙率和抗剪强度与距断层较远区域会有一定差异[5]。褶皱使得倾斜

岩层发生弯曲和翘曲,也会导致褶皱区岩石的压缩和张拉特性与其他区域不同[6]。
在工程建造开始前,岩土工程勘察人员会运用测试手段直接或者间接地获取
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图1-1 地层分布类型

(a)
 

倾斜岩层;
 

(b)
 

断层;
 

(c)
 

褶皱

工程建设场地的水文、地质、环境特征和岩土体性质,进而为岩土工程的施工、设计

和稳定性评价提供工程资料。在岩土工程勘察中,可以通过勘探钻孔直接得到地

层类别的信息,但是由于钻孔数量有限,工程师只能获取局部地层分布和岩土体参

数信息。因此,工程地质建模的过程中充满着不确定性,其来源主要有3类:
 

①观

测误差;
 

②地层分布和岩土参数固有的空间变异性;
 

③地质知识的缺乏。其中,观
测误差和地层分布及岩土参数固有的空间变异性可以通过增加测量次数或使用更

先进的测量设备来减少,它们的不确定性可以通过概率密度函数进行量化分析。
因此,如何融合多源数据,考虑地层分布和岩土参数的空间变异性并量化其不确定

性,从而进行三维精细化地质建模是当前的研究热点。

1.2 岩土工程地层模型不确定性量化及预测研究现状

利用岩土勘察数据对地层分布及其边界进行推断(如上软下硬地层交界面)是
岩土工程三维地质建模的研究热点。由于地层分布复杂多变以及钻探数据具有稀

疏性,尚未有一种有效的准确预测地层分布的方法。在利用钻孔或原位测试数据

对地层的三维空间分布进行重构方面,国内外学者做了大量的研究工作,主要包括

表面建模方法和体素建模方法[7-18]。表面建模对地层界面进行建模,不同界面之

间的地层属于同一种地层类型,即将地层界面的高度视为与水平位置相关的数学

函数,该方法主要适用于序列沉积的地层分布类型[10-12]。体素建模将建模区域离

散为结构化的体素网格,每个体素代表一种地层类型。体素建模没有层面约束,适
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合处理复杂多变的地质情况[13-14]。两点地质统计和多点地质统计是广泛应用的

体素建模方法。两点地质统计方法通过分析两个空间点之间的相关性进行地层分

布建模,每个体素的地层类型被视为随机变量,主要方法包括泊松过程[19]、高斯过

程[20]和马尔可夫过程[21]。泊松过程假设每个体素的地层类型服从泊松分布,具
有稳定且独立的增量,该模型只能分析两种地层类型[22]。高斯过程适用于连续变

量,而地层类型属于离散变量,因此,研究人员将高斯过程转换为截断高斯过程和

指示克里金法,使其适用于地层分类问题[23-24]。然而,高斯过程的计算负担与空

间点数量的二次方呈正相关,限制了其在大规模地质建模中的适应性[25]。马尔可

夫过程假设不同点之间的相关性服从马尔可夫特性[26],减轻了计算需求[27],使其

适用于大尺度区域的建模分析。基于马尔可夫过程的地层分布建模方法有一维马

尔可夫链、耦合马尔可夫链和马尔可夫随机场。然而,马尔可夫过程在估计水平转

移概率矩阵时存在困难,这主要是因为钻孔位置在水平方向不连续[28]。为了准确

估计水平转移矩阵,研究人员利用瓦尔特(Walther)定律将水平转移概率矩阵与垂

直转移概率矩阵关联[22]。需要注意的是,瓦尔特定律只对同源地层的序列沉积地

层有效[29-30]。一般来说,两点地质统计方法采用平稳假设,即不同空间点之间的

相关性保持不变,相关性大小仅取决于它们之间的距离。这种平稳假设可能与实

际不一致,在实际工程中,不同空间点之间的相关性随它们之间的距离变化而变

化[31]。多点地质统计方法是一种基于像素块的体素地质建模方法,它通过从训练

图像中提取和利用相似的地层变化特征,克服了两点地质统计方法的局限性[32]。
多点地质统计方法不依赖于平稳相关性假设,与实际工程情况更加接近[33]。研究

人员探索将多点地质统计方法与机器学习技术相结合,以进一步增强其适应性和

准确性,例如迭代卷积极限梯度提升模型[31]。相对于两点地质统计方法,多点地

质统计方法依赖于高质量的训练图像。然而,训练图像的获取通常是主观的,与待

建模场地真实地层分布可能存在一定出入[20]。
综上所述,目前针对岩土工程地层体素建模的研究主要集中于两点地质统计

方法和多点地质统计方法,对基于深度学习的地质建模方法的研究较少[31]。传统

的两点地质统计方法和多点地质统计方法存在计算消耗大或建模精度低的问题,
而图卷积神经网络能够有效捕捉复杂的空间相关性并处理非平稳数据,从而构建

更加精细的地质模型。图卷积网络是一种半监督学习方法,其输入包含整个建模

区域,只在标记的钻孔数据上进行训练。这种方法不仅提高了地质模型的准确性,
还解决了多点地质统计方法依赖训练图像的问题。此外,图卷积网络通过对图结

构数据进行卷积操作,减少了大型协方差矩阵求逆的计算消耗,有效地降低了计算

复杂度,使其在处理大量工程地质数据时更加高效。
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1.3 基于马尔可夫链模型的地层体素建模

1.3.1 随机过程简介

随机过程是一种用于描述系统在时间或空间上随机变化的数学模型,广泛应

用于物理、金融、工程和生物学等领域。随机过程定义为一系列随机变量的集合,
用来表示系统随空间或时间演化的随机行为。形式上,随机过程可以表示为{Xt:

 

t∈T},其中,指标t为时间,T 为随机过程的指标集,随机变量Xt 为过程在t处的

状态。指标集T 亦可以是离散的或连续的,如{Xt:
 

t=0,1,2,…}表示以非负整

数为指标的离散时间随机过程,{Xt:
 

t≥0}表示以非负实数为指标的连续时间随

机过程。随机过程的状态空间为随机变量Xt 所有可能取值的集合,状态空间可

以是离散的或连续的。离散状态随机过程指Xt 只能取有限或可数的多个值,例
如标准贯入试验锤击数、掷硬币的正反面;

 

连续状态随机过程是指Xt 可以取连续

的数值,如土的黏聚力、气温的变化。常见的随机过程有马尔可夫链、马尔可夫随

机场、独立增量过程、泊松过程、高斯随机过程等。

1.3.2 马尔可夫链模型

马尔可夫链(Markov
 

chain)是一类满足“马尔可夫性”的随机过程。考虑一个

时间离散的马尔可夫链{Xt:
 

t=0,1,2,…},其状态空间为有限集合S={s1,

s2,…,sn}。为了描述马尔可夫链的概率性质,需要给出不同时间点时系统处于某

一状态的概率,即p{X0=s0,X1=s1,…,Xn=sn}的值。初始概率分布为初始时

间点时系统处于各个状态的概率分布,记πi 为系统在初始时刻处于状态si 的概

率,则πi=p{X0=si},i=1,2,…,n,其中X0 为系统在初始时刻的状态。系统从

一个状态转移到另一个状态的“转移概率”记为p{Xn=sn|X0=s0,X1=s1,…,
Xn-1=sn-1}。根据马尔可夫性质,条件概率p{Xn=sn|X0=s0,X1=s1,…,

Xn-1=sn-1}只依赖于当前状态Xn-1=sn-1,而与之前的状态序列{X0,X1,…,

Xn-2}无关,即p{Xn=sn|X0=s0,X1=s1,…,Xn-1=sn-1}=p{Xn=sn|Xn-1=
sn-1}。这意味着,满足“马尔可夫性”的系统当前所处的状态已知,就可以完全确

定其未来的行为,而无须知道系统之前经历的状态序列。记pij=p{Xt+1=sj|
Xt=si},即给定当前状态Xt=si,系统在下一时刻t+1转移到状态sj 的概率为

pij。为了描述系统所有可能的状态转移,将所有的转移概率pij 组织成一个矩阵,
这个矩阵称为状态转移矩阵P。对于一个有n 个状态的系统,转移矩阵P 是一个

n×n 的矩阵,其中第i行第j列的元素表示从状态si 转移到状态sj 的概率。转移

矩阵P 的每一行之和为1。通过对状态转移矩阵的分析,可以获得系统的长期行
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为和稳态分布。稳态分布是指当时间趋于无限长时,系统达到稳定状态的概率分

布。在稳态下,各状态的概率分布不再随时间变化。稳态分布π 满足以下方程:
 

π
 

P=π (1-1)
其中,π 是一个行向量,其元素之和为1。

具体而言,要找到稳态分布需要求解以下线性方程组:
 

πj =∑
nt

i=1
πiPij (1-2)

其中,πj 为系统在长期运行后处于状态sj 的概率;
 

nt为转移步数。
在一些马尔可夫链中,某些状态一旦被访问就无法离开,这些状态称为吸收状

态。如果状态si 是吸收状态,则pii=1且pij=0(对于j≠i)。常返态是指系统

从该状态出发,最终一定能够返回该状态。暂态是指系统从该状态出发,可能永远

不会返回该状态。以fi 表示初始状态为i的马尔可夫链迟早再进入状态i的概

率,若fi=1,则状态i为常返态;
 

若fi<1,则状态i为暂态。如果一个马尔可夫

链中的所有状态都是常返态,并且从任意状态都可以到达其他任意状态,则该马尔

可夫链称为遍历的。具有遍历性的马尔可夫链,所有状态的稳态分布都存在且唯

一。遍历性可保证模型在长期预测中的稳定性和一致性。
将马尔可夫链模型应用于地质建模包括几个关键步骤:

 

数据收集,定义状态

空间,网格划分,确定初始概率分布,估计转移概率矩阵,模拟和预测地层分布,模
型验证。其中,第一步即数据收集是建模的基础。地质建模的数据通常来自现场

勘探钻孔、物探等,包括地层类型、岩土体属性(如密度、孔隙度、剪切强度等)、地质

构造等。这些数据的质量和数量直接影响模型的精度和可靠性,应尽可能确保数

据的真实性和代表性。第二步是定义状态空间,明确状态空间的范围和各状态的

具体含义。在地质建模中,状态空间是一个有限集合,对应不同的地层类型,例如

黏土、砂岩、页岩、石灰岩等。第三步,网格划分并确定初始概率分布。将待建模的

二维或三维物理空间划分成一系列的小矩形或小长方体,根据钻孔数据统计不同

地层类型在初始位置的出现频率,从而估计初始状态的概率分布。第四步,估计转

移概率矩阵,主要通过统计已有的钻孔数据或其他地质信息对转移概率矩阵进行

估计。具体来说,通过统计相邻钻孔中地层类型的变化情况,计算不同地层类型之

间的转移频率,得到从一种地层类型转变到另一种地层类型的转移概率。第五步,
利用已经确定的初始概率分布和转移概率矩阵,对未知区域的地层分布进行模拟

和预测。通过蒙特卡罗模拟随机采样,生成多组地层分布模型,以量化地层分布的

不确定性。最后的环节是模型验证,常用的方法为交叉验证。
以上步骤中,利用钻孔数据估计转移概率矩阵是难点。建模过程通常会引入

竖直转移矩阵和水平转移矩阵,以模拟竖直和水平方向上地层类型的转换概率。
由于钻孔的竖直方向有连续的样本,竖直方向转移概率矩阵可根据钻孔资料直接
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统计得到[21]。但钻孔在水平方向是稀疏分布的,水平方向没有连续的地层样本信

息,因此水平转移概率矩阵难以通过统计方法直接估计[21]。有学者提出,可以先

估计竖直转移矩阵,然后根据瓦尔特定律建立水平转移矩阵和竖直转移矩阵的联

系,从而估计水平转移矩阵[21,34]。

1.4 基于马尔可夫随机场模型的地层体素建模

马尔可夫随机场(Markov
 

random
 

field,MRF)是具有“马尔可夫性”的随机

场,是一种用于描述空间数据特征的统计模型,广泛应用于图像处理、计算机视觉

和地质建模等领域。随机场是随机过程在多维空间的拓展,两者之间的区别在于:
 

随机过程的指标参数一般是标量实数,随机场的指标参数为多维矢量(如二维或三

维空间坐标)。为了利用马尔可夫随机场模型进行地层体素建模,采用矩形网格对

待建模的二维区域进行划分和标记,所有矩形单元的集合记为M={1,2,…,mr},
其中mr 为矩形网格的个数。第i个矩形单元和它周围的8个矩形单元共节点或

边,这8个矩形单元定义为该矩形单元的邻域,记为Ui。邻域系统可用以分析空

间上的马尔可夫性。邻域的定义可以根据具体应用场景确定,例如图像处理中的

四邻域、八邻域等。在地层分布建模中,邻域可以根据地质结构和采样位置的分布

确定。
在离散的网格区域上定义 m 个随机变量组成的随机场X={X1,X2,…,

Xm},Xi(i∈M)从状态空间S={s1,s2,…,sn}中取值。记事件X=s表示联合

事件(Xi=si,i∈M),s={s1,s2,…,sm}表示对所有网格单元的一次赋值,即随机

场X 的一次抽样的样本,则SS={s={s1,s2,…,sm}|si∈S,i∈M}表示随机场X
所有可能的取值情况。满足以下条件的随机场X 称为马尔可夫随机场[35-36]:

 

p{X =s}>0, s∈SS (1-3)

p(Xi=si|XM-{i}=sM-{i})=p(Xi=si|XUi
=sUi

) (1-4)
式中,XM-{i}表示除第i个网格单元的其他所有网格单元对应的随机变量的集合;

 

XUi
表示第i个矩形单元的邻域网格单元的随机变量的集合。式(1-4)表示马尔可

夫随机场的马尔可夫性,即对于任意位置i,其状态 Xi 仅依赖于其邻域Ui 的状

态。根据马尔可夫性假设,系统的联合概率分布可以分解为条件概率的乘积:
 

p(X)=
1
Z∏ip(Xi|XUi

) (1-5)

式中,Z 为归一化常数,用于确保概率分布的总和为1。
根据Hammersley-Clifford定理与吉布斯分布,系统的联合概率分布可以进一

步写为

p(X)=
1
Zexp

[-E(X)|Tt] (1-6)
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式中,Tt表示温度;
 

E(X)为能量函数,其计算表达式为

E(X)=∑
c∈C

V(X) (1-7)

其中,V(X)为团势函数;
 

C 为马尔可夫无向图中所有团的集合。有关团和团势的

详细解释可参考文献[37-38]。团势函数的选择和设计是马尔可夫随机场模型构

建的关键之一,它决定了模型如何捕获空间数据的内在结构和相互依赖关系。势

函数的具体形式通常包含一系列参数,这些参数决定了模型的行为。常见的势函

数形式包括一阶势函数和二阶势函数。一阶势函数描述单个位置的状态能量,二
阶势函数描述相邻位置之间的状态能量。在地层分布建模中,团势函数须要反映

地层类型之间的空间连续性和相似性,例如,两个相邻位置具有相似地层类型的概

率较高,相应的势函数值较低,表示这种状态配置的能量较小,更有可能出现。团

势函数的构建可参考文献[36]。通过合理设计势函数,可以准确地表征地层的空

间分布特征。马尔可夫随机场模型参数估计通常采用最大似然估计或贝叶斯理论

等方法。

1.5 基于图卷积网络模型的地层体素建模

1.5.1 图卷积网络算法简介

图卷积网络(graph
 

convolutional
 

networks,GCN)是一种专为处理图结构数

据而设计的神经网络。在图卷积网络中,数据被概念化为一个图G=(V,E),其中

V 表示节点集合,E 表示连接这些节点的边集合,图中每个节点v 都对应一个特征

向量xv。整个图由表示节点之间连接的邻接矩阵A 和表示每个节点特征的特征

矩阵Xf 组成。图卷积网络的基本操作是图卷积,它通过聚合其邻居节点的特征

来更新每个节点的特征向量xv。这种卷积操作是从欧几里得数据到图结构数据

的传统卷积的泛化,旨在学习一个函数,该函数能够利用节点本身及其邻居节点的

特征,生成更新后的节点特征向量。图卷积操作的数学形式如下:
 

H(l+1)=σ(D
~-1/2A

~
D
~-1/2H(l)W(l)) (1-8)

式中,H(l)为第l层的特征矩阵;
 

A
~
=A+I,且A 为邻接矩阵;

 

D
~

为A
~

的度矩阵;
 

W(l)为第l层的可训练权重矩阵;
 

σ为非线性激活函数。
图1-2所示为图卷积网络的邻域聚合过程,其输入的拓扑图具有4个节点和5

条边。在邻域聚合过程中,需要分别计算邻接矩阵A、度矩阵D 和特征矩阵H(l)。
邻接矩阵A 表示节点之间的连接特征,其中非零元素表示两个节点之间存在边。
度矩阵D 是一个对角矩阵,其中每个对角元素对应于连接到该节点的边的数目。
特征矩阵H(l)包含每个节点的特征向量xv。将单位矩阵I添加到邻接矩阵A,得
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到新的邻接矩阵A
~。类似地,将度矩阵D 更新为D

~
以反映A

~
的变化。然后利用新

的度矩阵D
~

标准化新的邻接矩阵A
~

以得到缩放的邻接矩阵A�。该缩放的邻接矩

阵A� 表示邻居节点的特征矩阵H(l)的权重,反映特征聚合过程中相邻节点特征向

量对目标节点的影响。在此步骤中,相邻节点和目标节点的特征向量被聚合以更

新目标节点的特征向量。图1-3表示图卷积网络的信息更新过程。在此步骤中,
更新后的节点特征矩阵作为多层感知机的输入,并根据钻孔位置的已知地层类型

数据通过反向传播训练不断迭代优化权重。

图1-3 图卷积网络信息更新过程示意图

图卷积网络模型的训练过程在于优化其各层的权重矩阵W(l),使损失函数最

小。该损失函数通常与拓扑图中的节点分类或链接预测等具体需求对应。三维地

质建模的需求是利用钻孔揭露的已知地层类型对每个空间点进行分类。因此,地
质建模采用交叉熵损失函数,以衡量地层的预测概率分布与实际概率分布之间的

差异。交叉熵的表达式如下:
 

H(p,q)=-∑
i
p(i)lgq(i) (1-9)

式中,H(p,q)为两个概率分布p 和q之间的交叉熵;
 

p(i)代表实际的地层分布;
 

q(i)代表由图卷积网络预测的地层分布。

1.5.2 拓扑图构建

在地质建模的拓扑图构建过程中,首先将待建模区域离散化为图节点,并通过

这些离散节点构建拓扑图来表征整个建模区域。拓扑图中每个节点的特征向量

xv 由地层类型和对应的空间坐标(x,y,z)组成。这种将空间坐标包含于特征向

量的设定符合托布勒地理学第一定律,即空间位置更近的地质体的特性更相似。
在三维地质建模中,每个节点的空间坐标包括三个空间分量。因此,每个节点的特

征向量大小为1×4,包括地层类型及其空间坐标。这种定义特征向量的方式可以

确保模型能够准确捕捉地层分布的复杂空间相关性。在地质建模中,不同空间点

之间的连接并不像社交或引用网络中的连接那样明确,需要开发新的方法来建立

图节点之间的边。借鉴马尔可夫随机场模型中的邻域概念,本小节采用长方体邻

域系统构建每个空间点与邻域内其他点之间的连接。该长方体邻域系统的特征为
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3个超参数(即长方体的长度、宽度和高度),分别表示为Ix、Iy 和Iz。这些参数确

定了一个空间点的影响范围,定义了单个节点的地层类型在拓扑图中的传播范围。
为了准确反映不同空间点之间的复杂关系,采用高斯核对节点之间的边赋予权重。
高斯核的公式如下:

 

Q(xi,xj)=exp-
‖xi-xj‖

2

2η2  (1-10)

式中,Q(xi,xj)表示连接第i个节点和第j个节点的边的高斯权重;
 

‖xi-xj‖
为第i个节点和第j个节点之间的欧几里得距离;

 

η 为高斯核的空间方差。显然

上式亦满足托布勒地理学第一定律。
如果将每个节点与其长方体邻域内的所有节点以及钻孔位置节点都建立连

接,将导致图卷积网络在三维地质建模中的计算负担过重。为提高计算效率,使用

地层的全局分布特征优化建模过程:
 

首先统计所有钻孔中各类地层出现的概率,
然后将这些统计概率嵌入节点的特征向量xv 中。因此,每个节点的特征向量xv

包含3个部分:
 

标记的地层类型、空间坐标和地层类型的统计概率[39]。图1-4展

示了三维地质建模的拓扑图构建过程,以x、y 和z 方向上的4×1×4建模区域为

例。图中左侧为已知的钻孔数据区域,右侧为待预测区域。钻孔数据显示存在2
种地层类型,分别标记为第0层和第1层。拓扑图的具体构建步骤如下:

 

首先将

建模区域离散化为4×1×4节点网格,每个节点对应一个空间点;
 

然后建立包含

所有节点属性的特征向量(16×4),其中每行代表一个节点的特征向量,包含地层

类型和空间坐标信息。接着在相邻系统内建立节点间的连接关系(如图1-4中绿

色长方体所示),将空间相关性转化为拓扑图中的边,并基于节点对之间的欧几里

得距离计算高斯权重,形成16×16的加权邻接矩阵。图1-4右下角的示例节点通

过深色虚线展示了与其他节点的连接关系,其中红色虚线表示已赋权的边。最后,
利用钻孔揭示的地层类型概率分布更新特征矩阵,形成16×6的增强特征矩阵,从
而更好地体现地层分布的全局特征。

1.5.3 模型架构

图卷积网络模型架构如图1-5所示。该模型包括一个输入层、三个图卷积层

(graph
 

convolution
 

layer,GCL)和一个输出层。输出层的预测转换采用Softmax
函数以实现不确定性量化。三个GCL均采用ReLU激活函数。此外,每个GCL
后面都加入一个Dropout层,以降低过拟合的风险,提高模型的泛化能力。GCL
的通道数分别为32、16和16。图卷积网络模型的超参数包括长方体邻域系统的长

度、宽度和高度(即Ix、Iy 和Iz)以及高斯核的方差η。这些超参数采用贝叶斯优

化程序进行优化,以确定最有效的参数组合,从而确保在不同地质情景下模型性能

最佳。


