
第1章
概率论的基本知识

  为了能够顺利阅读后面章节,本章对与本书有关的概率论基本内容作简要介绍.

1.1 概率论的基本概念

定义1.1 设随机试验E 的样本空间为Ω,Ω 的某些子集组成集类�,称� 为随机试验

E 的事件域,如果它满足下列条件:
(1)

 

Ω∈�;
(2)

 

若A∈�,则Ac∈�;

(3)
 

若Aj∈�,j=1,2,…,则∪
∞

j=1
Aj∈�.

称�中的元素为随机事件,简称事件.
样本空间Ω 的全体子集构成的集合就是随机试验E 的一个事件域.
定义1.2 对事件域�中的每个事件A 赋予一个实数,记为P(A),称为事件A 的概

率,如果集合函数P(·)满足下列条件:
(1)

 

对任一A∈�,P(A)≥0;
(2)

 

P(Ω)=1;
(3)

 

对两两互不相容事件A1,A2,…(即当j≠k时,Aj ∩Ak =⌀)有

P ∪
∞

j=1
Aj  =∑

∞

j=1
P(Aj).

三元组(Ω,�,P)称为概率空间.
如果定义在样本空间Ω 上的单实值函数ξ,对任意实函数x,{ω|ξ(ω)≤x}(简记为

{ξ≤x})均为事件,即{ξ≤x}∈�,则称ξ为随机变量.称F(x)=P{ξ≤x},x∈RR为随机变

量ξ的分布函数.

设X,Y 为随机变量,施瓦茨(Schwarz)不等式E(|XY|)≤ E(X2) E(Y2)成立.

1.2 随机变量的特征函数

1.2.1 复随机变量

  定义1.3 如果X 与Y 都是实随机变量,称Z=X+iY 为复随机变量,其中i= -1.
复随机变量Z 的数学期望定义为E(Z)=E(X)+iE(Y),其中E(X),E(Y)分别是实

随机变量X,Y 的数学期望.
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若X 是实随机变量,对任意的实数t,显然eitX 是复随机变量.

1.2.2 特征函数的定义

定义1.4 设X 是实随机变量,则对任意实数t,有

φ(t)=E(eitX)=E(costX+isintX)=E(costX)+iE(sintX).
称φ(t)为随机变量X 的特征函数.

设离散型随机变量X 的分布律为

pk=P{X=xk}, k=1,2,…,
则X 的特征函数可表示成

φ(t)=E(eitX)=∑
∞

k=1
e
itxkpk

 .
 

(1.1)

  设连续型随机变量X 的概率密度为f(x),则X 的特征函数可表示为

φ(t)=E(eitX)=∫
+∞

-∞
eitxf(x)dx. (1.2)

  一般地,设随机变量X 的分布函数为F(x),则X 的特征函数可表示为

φ(t)=E(eitX)=∫
+∞

-∞
eitxdF(x). (1.3)

  由(1.2)式可见,连续型随机变量的特征函数φ(t)是概率密度f(x)的傅里叶积分,简
称F 积分.(1.3)式表明随机变量的特征函数φ(t)是分布函数F(x)的傅里叶-斯蒂尔吉斯

积分或F-S 积分.
例1.1 设离散型随机变量X 的分布律为

X -1 0 1

pk 0.25 0.5 0.25

求X 的特征函数.
解 φ(t)=E(eitX)=0.25e-it+0.5ei0t+0.25eit=0.5cost+0.5.
下面计算一些重要概率分布的特征函数.

1.2.3 重要概率分布的特征函数

例1.2(二项分布的特征函数) 设随机变量X 的分布律为P{X=k}=Ck
npkqn-k,其中

0<p<1,q=1-p,k=0,1,2,…,n,求随机变量X 的特征函数.

解 φ(t)=∑
n

k=0
eitkCk

npkqn-k =(peit+q)n.

当n=1时,X 服从(0-1)分布,其特征函数为

φ(t)=peit+q, t∈RR.

例1.3(泊松分布的特征函数) 设随机变量 X 的分布律为P{X=k}=
λk

k!e
-λ,其中

λ>0,k=0,1,2,…,求随机变量X 的特征函数.
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解 φ(t)=∑
∞

k=0
eitkλ

k

k!e
-λ =e-λ∑

∞

k=0

(λeit)k

k! =e-λeλe
it

=eλ(e
it-1), t∈RR.

例1.4(指数分布的特征函数) 设X 服从参数为λ的指数分布,求X 的特征函数.
解 X 的概率密度函数为

f(x)=
λe-λx, x≥0,

0, x<0, 
根据特征函数的定义有

φ(t)=E(eitX)=∫
+∞

-∞
eitxf(x)dx

=∫
+∞

0
eitxλe-λxdx=λ∫

+∞

0
e(it-λ)xdx=

λ
λ-it= 1-

it
λ  

-1

, t∈RR.
 

  例1.5(正态分布的特征函数) 设随机变量 X 服从正态分布N(a,σ2),其中-∞<
a<+∞,σ>0,求X 的特征函数.

解 X 的概率密度是

f(x)=
1
2πσ
e
-
(x-a)2

2σ2 , -∞<x<+∞,

故得

φ(t)=
1
2πσ∫

+∞

-∞
eitxe

-
(x-a)2

2σ2 dx
令u=

x-a
σ

􀪅􀪅􀪅􀪅􀪅􀪅
1
2π∫

+∞

-∞
eit(a+σu)e

-
u2

2du

=
1
2π
e
ita-

σ2t2

2∫
+∞

-∞
e

-
(u-iσt)2

2 du

=e
iat-

1
2σ
2t2

.
特殊地,标准正态分布N(0,1)的特征函数为

φ(t)=e
-12t

2

, t∈RR.
唯一性定理 分布函数F(x)与其特征函数φ(t)是一一对应的.
例如,例1.1中的特征函数φ(t)=0.5cost+0.5对应的分布律为

X -1 0 1

pk 0.25 0.5 0.25

1.2.4 特征函数的性质

性质1和性质6仅对连续概率分布的情形证明特征函数的性质.
性质1 |φ(t)|≤φ(0)=1.
证明 φ(0)=E(ei0X)=1.

|φ(t)|=|E(eitX)|=∫
+∞

-∞
eitxf(x)dx ≤∫

+∞

-∞
|eitx|f(x)dx=∫

+∞

-∞
f(x)dx=1.
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性质2 共轭对称性φ(-t)=φ(t).
证明 φ(-t)=E(e-itX)=E[cos(-tX)]+iE[sin(-tX)]

=E(costX)-iE(sintX)=E(costX)+iE(sintX)=φ(t).
性质3 特征函数φ(t)在区间(-∞,+∞)上一致连续.
证明 略.
性质4 设随机变量Y=aX+b,其中a,b是常数,则

φY(t)=eibtφX(at),
其中φX(t),φY(t)分别表示随机变量X,Y 的特征函数.

证明 φY(t)=E(eitY)=E(eit
(aX+b))=eibtE(ei(at)X)=eibtφX(at).

性质5 设随机变量X,Y 相互独立,又Z=X+Y,则

φZ(t)=φX(t)φY(t).
证明 φZ(t)=E(eitZ)=E[eit

(X+Y)]=E(eitX·eitY)=E(eitX)E(eitY)=φX(t)φY(t).
性质6 设随机变量X 的n 阶原点矩存在,则它的特征函数φ(t)的k阶导数φ

(k)(t)存
在,且有

φ
(k)(0)=ikE(Xk)或E(Xk)=i-kφ

(k)(0), k=1,2,…,n.

证明 因φ(t)=E(eitX)=∫
+∞

-∞
eitxf(x)dx,故

φ
(k)(t)=

dk

dtk∫
+∞

-∞
eitxf(x)dx=∫

+∞

-∞

dk

dtke
itxf(x)dx

=∫
+∞

-∞
ikxkeitxf(x)dx=ik∫

+∞

-∞
xkeitxf(x)dx.

因而

φ
(k)(0)=ik∫

+∞

-∞
xkf(x)dx=ikE(Xk), k=1,2,…,n.

上述推导过程中 dk

dtk∫
+∞

-∞
eitxf(x)dx=∫

+∞

-∞

dk

dtke
itxf(x)dx 成立,需要满足条件

∫
+∞

-∞

dk

dtke
itx f(x)dx<+∞, 即∫

+∞

-∞
|ikxkeitx|f(x)dx<+∞.

  事实上,由于X 的n 阶原点矩存在,所以E(|X|k)<+∞,k=1,2,…,n,从而

∫
+∞

-∞

dk

dtke
itx f(x)dx=∫

+∞

-∞
ikxkeitx f(x)dx≤∫

+∞

-∞
x kf(x)dx<+∞.

  此性质表明,随机变量的各阶原点矩可由其特征函数在原点的相应阶导数得到.
例1.6 若随机变量X 和Y 相互独立,且分别服从参数为λ1 和λ2 的泊松分布.试用特

征函数求随机变量Z=X+Y 的概率分布.

解 由泊松分布特征函数有φX(t)=e
λ1(e

it-1),φY(t)=e
λ2(e

it-1)
.

利用特征函数性质(5),有

φZ(t)=e
λ1(e

it-1)
e

λ2(e
it-1)
=e

(λ1+λ2)(e
it-1)

.
由唯一性定理得随机变量Z 为具有参数λ1+λ2 的泊松分布.
例1.7 设 X1,X2,…,Xn 相互独立,且 Xj 服从参数为mj 和p 的二项分布,j=

1,2,…,n.
 

证明Y=∑
n

j=1
Xj 服从参数为∑

n

j=1
mj 和p 的二项分布.
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证明 因为Xj 服从参数为mj 和p 的二项分布,故其特征函数分别为

φXj
(t)=(peit+q)

mj, j=1,2,…,n,

由X1,X2,…,Xn 相互独立得Y=∑
n

j=1
Xj 的特征函数为

φY(t)=∏
n

j=1
φXj
(t)=∏

n

j=1

(peit+q)
mj =(peit+q)

∑
n

j=1
mj

.

可见,随机变量Y=∑
n

j=1
Xj 服从参数为∑

n

j=1
mj 和p 的二项分布.

例1.8 利用特征函数求例1.1中随机变量的数学期望、方差和三阶原点矩.
解 因为φ(t)=E(eitX)=0.5cost+0.5,

 

所以

φ'(t)=-0.5sint, φ″(t)=-0.5cost, φ‴(t)=0.5sint.
从而φ'(0)=0,φ″(0)=-0.5,φ‴(0)=0.因此,由性质(6)知

E(X)=
1
iφ'

(0)=0, D(X)=i-2φ″(0)-(E(X))2=0.5, E(X3)=
1
i3φ

‴(0)=0.

1.3 多元特征函数和多维正态分布

1.3.1 多维概率分布及其数字特征

  我们学过二维随机变量,下面把二维随机变量的一些概念推广到多维随机变量.

1.
 

分布函数

设n 维随机变量X=(X1,X2,…,Xn),称

F(x1,x2,…,xn)=P{X1≤x1,X2≤x2,…,Xn≤xn}, x1,x2,…,xn∈RR
为n 维随机变量(X1,X2,…,Xn)的n 维分布函数,用向量的形式可表示为 F(x)=
P{X≤x},其中x=(x1,x2,…,xn),而X≤x 理解为X 对每一个分量都有Xj≤xj.

2.
 

数字特征

n 维随机变量(X1,X2,…,Xn)的数学期望E(X)定义为

E(X)=(E(X1),E(X2),…,E(Xn)).
E(X)的分量是X 各分量的数学期望.

n 维随机变量X=(X1,X2,…,Xn)的协方差(矩)阵定义为

B=

Cov(X1,X1) Cov(X1,X2) … Cov(X1,Xn)

Cov(X2,X1) Cov(X2,X2) … Cov(X2,Xn)
︙ ︙ ︙

Cov(Xn,X1) Cov(Xn,X2) … Cov(Xn,Xn)

􀮠

􀮢

􀪁
􀪁
􀪁
􀪁
􀪁􀪁

􀮦

􀮨

􀪁
􀪁
􀪁
􀪁
􀪁􀪁

,

其中,Cov(Xj,Xk)=E[(Xj-E(Xj))(Xk-E(Xk))], j,k=1,2,…,n.
当j≠k时,Cov(Xj,Xk)是随机变量Xj 和Xk 的协方差.
当j=k时,Cov(Xj,Xj)是随机变量Xj 的方差.
n 维随机向量X 的协方差阵刻画了它的各个分量概率分布的分散程度,以及各分量之
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间线性联系的密切程度,它的主对角线是X 的各分量的方差.
协方差阵也可以表示为

B=E

[X1-E(X1)]2 [X1-E(X1)][X2-E(X2)] … [X1-E(X1)][Xn-E(Xn)]

[X2-E(X2)][X1-E(X1)] [X2-E(X2)]2 … [X2-E(X2)][Xn-E(Xn)]

︙ ︙ ︙

[Xn-E(Xn)][X1-E(X1)] [Xn-E(Xn)][X2-E(X2)] … [Xn-E(Xn)]2

􀮠

􀮢

􀪁
􀪁
􀪁
􀪁
􀪁􀪁

􀮦

􀮨

􀪁
􀪁
􀪁
􀪁
􀪁􀪁

=E[X-E(X)][X-E(X)]T.
定理1.1 协方差(矩)阵是对称的非负定矩阵.
证明 由协方差的性质Cov(Xj,Xk)=Cov(Xk,Xj)知,协方差(矩)阵为对称矩阵.
再证协方差矩阵为非负定矩阵.事实上,对于任意n 个实数t1,t2,…,tn,有

∑
n

k=1
∑
n

j=1
Cov(Xj,Xk)tjtk =∑

n

k=1
∑
n

j=1
E[Xj -E(Xj)][Xk -E(Xk)]tjtk

=E ∑
n

k=1
∑
n

j=1
tj[Xj -E(Xj)]·tk[Xk -E(Xk)]  

=E ∑
n

j=1
tj[Xj -E(Xj)]  2 ≥0,

所以协方差矩阵为非负定矩阵.

1.3.2 多元特征函数及其性质

n(n>1)维随机变量的特征函数称为多元特征函数,它是一维随机变量的特征函数的

推广.多元特征函数的某些性质与一元特征函数的性质类似.
定义1.5 设n 维随机变量X=(X1,X2,…,Xn),称

φ(t1,t2,…,tn)=E(e
i(t1X1+t2X2+…+tnXn))

为n 维随机变量X 的特征函数,其中i= -1,t1,t2,…,tn∈RR.
记t=(t1,t2,…,tn),则n 元特征函数可以简单地表示为

φ(t)=E(eitX
T)=E(eiXt

T).
当X=(X1,X2,…,Xn)是离散型随机变量,X 的特征函数表示为

φ(t1,t2,…,tn)=∑
x1
∑
x2

…∑
xn

e
i(t1x1+t2x2+…+tnxn)P{X1=x1,X2=x2,…,Xn =xn}.

当X=(X1,X2,…,Xn)具有概率密度f(x1,x2,…,xn)时,X 的特征函数表示为

φ(t1,t2,…,tn)=∫
+∞

-∞∫
+∞

-∞
…∫

+∞

-∞
e
i(t1x1+t2x2+…+tnxn)f(x1,x2,…,xn)dx1dx2…dxn.

  唯一性定理 n 维随机变量的分布函数与其特征函数是一一对应的.
 

n 维随机变量的特征函数有以下性质:
(1)

 

|φ(t1,t2,…,tn)|≤φ(0,0,…,0)=1.
(2)

 

φ(-t1,-t2,…,-tn)=φ(t1,t2,…,tn).
(3)

 

φ(t1,t2,…,tn)在n 维欧几里得空间RRn上一致连续.
(4)

 

若φ(t1,t2,…,tn)是X=(X1,X2,…,Xn)的特征函数,则k(k∈{1,2,…,n})维随

机变量(X1,X2,…,Xk)的特征函数为
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φX1,X2,…,Xk
(t1,t2,…,tk)=φ(t1,t2,…,tk,0,…,0).

此性质表明,如果要获得n 维随机变量X 的k 维边缘概率分布的特征函数,只要在原

来的特征函数中保留自变量t1,t2,…,tk,其他自变量置零即可.
(5)

 

若φ(t1,t2,…,tn)是X=(X1,X2,…,Xn)的特征函数,则随机变量

Y=a1X1+a2X2+…+anXn

的特征函数为

φY(t)=φ(a1t,a2t,…,ant)
 

.
(6)

 

若φ(t1,t2,…,tn)是X=(X1,X2,…,Xn)的特征函数,而随机变量Xj 的特征函

数是φXj
(t),j=1,2,…,n,则随机变量X1,X2,…,Xn 相互独立的充分必要条件是

φ(t1,t2,…,tn)=φX1
(t1)φX2

(t2)…φXn
(tn).

(7)
 

如果矩E(X
k1
1 X

k2
2 …X

kn
n )存在,则

E(X
k1
1 X

k2
2 …X

kn
n )=i

-∑
n

j=1
kj ∂

k1+k2+…+knφ(t1,t2,…,tn)

∂t
k1
1∂t

k2
2 …∂t

kn
n

􀭠
􀭡

􀪁
􀪁􀪁 􀭤

􀭥

􀪁
􀪁􀪁

t1=t2=…=tn=0
.

1.3.3 n维正态随机变量及其性质

n 维正态分布在概率论、数理统计和随机过程中占有重要的位置.
若二维随机变量(X1,X2)的概率密度为

f(x1,x2)=
1

2πσ1σ2 1-ρ2
·

exp-
1

2(1-ρ2)
(x1-a1)2

σ21
-2ρ

(x1-a1)(x2-a2)
σ1σ2

+
(x2-a2)2

σ22
􀭠
􀭡

􀪁
􀪁 􀭤

􀭥

􀪁
􀪁  

 

,

     -∞ <x1 <+∞,-∞ <x2 <+∞
则称随机变量(X1,X2)为二维正态随机变量,该概率密度称为二维正态概率密度,其中

a1=E(X1), a2=E(X2), σ21=D(X1), σ22=D(X2),

ρ是随机变量X1 与X2 的相关系数.

令 B=
σ21 ρσ1σ2

ρσ1σ2 σ22  ,a=(a1,a2),x=(x1,x2),则有|B|=(1-ρ2)σ21σ22,

B-1=
1

(1-ρ2)σ21σ22
σ22 -ρσ1σ2
-ρσ1σ2 σ21  = 1

1-ρ2

1
σ21

-ρ
1

σ1σ2

-ρ
1

σ1σ2
1
σ22

􀮠

􀮢

􀪁
􀪁
􀪁
􀪁
􀪁

􀮦

􀮨

􀪁
􀪁
􀪁
􀪁
􀪁

,

从而

(x-a)B-1(x-a)T=
1

1-ρ2
(x1-a1)2

σ21
-2ρ

(x1-a1)(x2-a2)
σ1σ2

+
(x2-a2)2

σ22
􀭠
􀭡

􀪁
􀪁 􀭤

􀭥

􀪁
􀪁 ,

由此可知二维正态概率密度可以表示为

f(x)=
1

2π|B|
1
2
exp -

1
2
(x-a)B-1(x-a)T􀭠

􀭡

􀪁􀪁 􀭤
􀭥

􀪁􀪁 .
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可以将二维正态概率密度推广到n 维正态概率密度.
定义1.6 如果n 维随机变量X=(X1,X2,…,Xn)的分布密度为

f(x)=
1

(2π)
n
2|B|

1
2
exp -

1
2
(x-a)B-1(x-a)T􀭠

􀭡

􀪁􀪁 􀭤
􀭥

􀪁􀪁 ,

其中x=(x1,x2,…,xn),a=E(X)=(E(X1),E(X2),…,E(Xn)),

B=

Cov(X1,X1) Cov(X1,X2) … Cov(X1,Xn)

Cov(X2,X1) Cov(X2,X2) … Cov(X2,Xn)
︙ ︙ ︙

Cov(Xn,X1) Cov(Xn,X2) … Cov(Xn,Xn)

􀮠

􀮢

􀪁
􀪁
􀪁
􀪁
􀪁􀪁

􀮦

􀮨

􀪁
􀪁
􀪁
􀪁
􀪁􀪁

,

且矩阵B 是正定的,称X 为n 维正态随机变量.f(x)称为n 维正态概率密度.n 维正态分

布记为N(a,B).
可以证明,n 维正态分布N(a,B)的特征函数是

φ(t)=expiatT-
1
2tBt

T  .
定义1.7 如果n 维随机变量X 的特征函数是

φ(t)=expiatT-
1
2tBt

T  ,
其中a 是n 维行向量,B 是n 阶非负定矩阵,那么称 X 的概率分布是n 维正态分布

N(a,B).
当|B|=0,即B 不可逆时,定义1.7也是有意义的,而用定义1.6定义n 维正态分布则

要求|B|>0.所以,用多维特征函数定义n 维正态分布更为一般.显然,在|B|>0的情况下

两种定义方式是等价的.|B|>0时的n 维正态分布也称为非退化的n维正态分布.
下面介绍n 维正态分布的性质.
性质1 若n 维正态随机变量X=(X1,X2,…,Xn)的m(m<n)个分量构成m 维随机

变量X
~
=(X1,X2,…,Xm),则它是m 维正态随机变量,且其数学期望为a~=(a1,a2,…,am),

协方差阵为

B
~
=

Cov(X1,X1) Cov(X1,X2) … Cov(X1,Xm)

Cov(X2,X1) Cov(X2,X2) … Cov(X2,Xm)
︙ ︙ ︙

Cov(Xm,X1) Cov(Xm,X2) … Cov(Xm,Xm)

􀮠

􀮢

􀪁
􀪁
􀪁
􀪁
􀪁􀪁

􀮦

􀮨

􀪁
􀪁
􀪁
􀪁
􀪁􀪁

.

特别地,当m=1时,可得随机变量X1 服从正态分布N(a1,D(X1)).一般有随机变量

Xj 服从正态分布N(aj,D(Xj)),j=1,2,…,n.

证明 记t~=(t1,t2,…,tm),利用特征函数的性质(4),有

fX1,X2,…,Xm
(t1,t2,…,tm)=f(t1,t2,…,tm,0,…,0)=e

iatT-12tBt
T

tm+1=…=tn=0
,

其中atT|tm+1=…=tn=0=a1t1+a2t2+…+amtm=(a1,a2,…,am)(t1,t2,…,tm)T=a~t~T,
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tBtT|tm+1=…=tn=0

=(t1,t2,…,tm,0,…,0)

Cov(X1,X1) Cov(X1,X2) … Cov(X1,Xn)

Cov(X2,X1) Cov(X2,X2) … Cov(X2,Xn)
︙ ︙ ︙

Cov(Xn,X1) Cov(Xn,X2) … Cov(Xn,Xn)

􀮠

􀮢

􀪁
􀪁
􀪁
􀪁
􀪁􀪁

􀮦

􀮨

􀪁
􀪁
􀪁
􀪁
􀪁􀪁

t1
︙

tm

0
︙

0

􀮠

􀮢

􀪁
􀪁
􀪁
􀪁
􀪁
􀪁
􀪁
􀪁􀪁

􀮦

􀮨

􀪁
􀪁
􀪁
􀪁
􀪁
􀪁
􀪁
􀪁􀪁

=∑
m

k=1
∑
m

j=1
Cov(Xj,Xk)tjtk

=(t1,t2,…,tm)

Cov(X1,X1) Cov(X1,X2) … Cov(X1,Xm)

Cov(X2,X1) Cov(X2,X2) … Cov(X2,Xm)
︙ ︙ ︙

Cov(Xm,X1) Cov(Xm,X2) … Cov(Xm,Xm)

􀮠

􀮢

􀪁
􀪁
􀪁
􀪁
􀪁􀪁

􀮦

􀮨

􀪁
􀪁
􀪁
􀪁
􀪁􀪁

t1
t2
︙

tm

􀮠

􀮢

􀪁
􀪁
􀪁
􀪁
􀪁􀪁

􀮦

􀮨

􀪁
􀪁
􀪁
􀪁
􀪁􀪁

=t~B
~
t~T,

所以

fX1,X2,…,Xm
(t1,t2,…,tm)=f(t1,t2,…,tm,0,…,0)=expia~t~T-

1
2t
~B
~
t~T  ,

这是m 维正态分布的特征函数.

由唯一性定理,m 维正态随机变量X
~
=(X1,X2,…,Xm)服从正态分布N(a~,B

~
).

性质2 设X=(X1,X2,…,Xn)是n 维正态随机变量,则随机变量X1,X2,…,Xn 相

互独立的充分必要条件是它们两两不相关.
证明 必要性.设随机变量X1,X2,…,Xn 相互独立,则其中任意两个随机变量Xj 与

Xk(j≠k)相互独立,进而Xj 与Xk 不相关,所以X1,X2,…,Xn 两两不相关.
充分性.因为Cov(Xj,Xk)=0,j≠k,故X=(X1,X2,…,Xn)的协方差阵为

B=

D(X1) 0 … 0
0 D(X2) … 0
︙ ︙ ⋱ ︙

0 0 … D(Xn)

􀮠

􀮢

􀪁
􀪁
􀪁
􀪁
􀪁􀪁

􀮦

􀮨

􀪁
􀪁
􀪁
􀪁
􀪁􀪁

,

因此X 的特征函数

φ(t1,t2,…,tn)=expi∑
n

j=1
ajtj -

1
2∑

n

j=1
D(Xj)t2j  =∏

n

j=1
expiajtj -

1
2D
(Xj)t2j  =∏

n

j=1
fXj
(tj).

由多元特征函数的性质(6)得随机变量X1,X2,…,Xn 相互独立.
性质3 X=(X1,X2,…,Xn)服从n 维正态分布 N(a,B)当且仅当对任意常数

l1,l2,…,ln,随机变量Y=∑
n

j=1
ljXj 服从一维正态分布

N ∑
n

j=1
ljaj,∑

n

j=1
∑
n

k=1
ljlkCov(Xj,Xk)  .

证明 充分性.令l=(l1,l2,…,ln),a=(a1,a2,…,an),若

Y=∑
n

j=1
ljXj ~N ∑

n

j=1
ljaj,∑

n

j=1
∑
n

k=1
ljlkCov(Xj,Xk)  ,
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则有

E(eitY)=E(eitlX
T)=expialTt-

1
2lBl

Tt2  ,
其中B=(Cov(Xj,Xk))为X=(X1,X2,…,Xn)的协方差矩阵.

令t=1,得E(eilX
T)=expialT-

1
2lBl

T  .
由l的任意性,知X=(X1,X2,…,Xn)的特征函数

φ(l)=expialT-
1
2lBl

T  .
由特征函数的唯一性定理知,X=(X1,X2,…,Xn)~N(a,B).

必要性.若X 服从n维正态分布N(a,B),则其特征函数E(eit
TX)=expiatT-

1
2tBt

T  ,
由多元特征函数性质(5),Y 的特征函数

φY(t)=φ(l1t,l2t,…,lnt)=expit∑
n

j=1
ljaj -

1
2t

2∑
n

j=1
∑
n

k=1
Cov(Xj,Xk)ljlk

􀭠
􀭡

􀪁􀪁 􀭤
􀭥

􀪁􀪁 ,

这是正态分布N ∑
n

j=1
ljaj,∑

n

j=1
∑
n

k=1
ljlkCov(Xj,Xk)  的特征函数.

由唯一性定理,Y ~N ∑
n

j=1
ljaj,∑

n

j=1
∑
n

k=1
ljlkCov(Xj,Xk)  .

性质4 若X=(X1,X2,…,Xn)服从n 维正态分布N(a,B),又m 维随机变量Y=
XC,其中C 是n×m 矩阵,则Y 服从m 维正态分布N(aC,CTBC).

证明 Y 的特征函数为

φ(t)=E e itYT)=E(eit(XC)
T)=E(ei(Ct

T)TXT)

=expia(CtT)-
1
2
(CtT)TBCtT  

=expi(aC)tT-
1
2t
(CTBC)tT  .

这是m 维正态分布N(aC,CTBC)的特征函数,由唯一性定理得证.
 

性质4表明,正态随机变量经过线性变换后仍为正态随机变量.

例1.9 设X=(X1,X2),X~N(0,B),B=
1 2
2 1  ,Y1=2X1+3X2,Y2=X2,求:

 

(1)
 

Y=(Y1,Y2)的特征函数;(2)
 

Y3=X1+2X2 的分布.

解 A=
2 0
3 1  ,Y=XA,E(Y)=(0,0)2 0

3 1  =(0,0),
BY=ATBA=

2 0
3 1  

T 1 2
2 1  2 0

3 1  = 37 7
7 1  .

故Y 的特征函数为

φY(t)=exp -
1
2tBYtT  =exp -12(37t21+t22+14t1t2)􀭠

􀭡

􀪁􀪁 􀭤
􀭥

􀪁􀪁 .


