Unitone Programming Language

1.1

1. The Fundamental Components of a Program

Data types, operators'’, and expressions are the most fundamental
components of a program and serve as the foundation for learning any
programming language. This section introduces the basic concepts of C

rogramming, including data types, Variablesm, constantsm, operators,
Yy
[4]

and expressions”, as well as methods for writing simple programs using
basic input/output functions.
(1) In a C program, every variable, constant, and expression has a

specific data type. The data type explicitly” or implicitly” defines the

range of possible values that a variable or expression can take during
program execution, as well as the operations allowed on those values. The
primary data types in C can be classified into four categories: basic data
types, derived data types'”, pointer types", and the void type".

(2) C provides a rich set of operators to perform complex expression

. 1 : 11
evaluations. In general, unary operators''” have higher precedence''",

. . 12 . . 1
while assignment operators'” have lower precedence. Arithmetic!"”

operators have higher precedence than relational "

and logical operators.

[16]

Most operators have left associativity!'”, whereas unary, ternary'®, and

assignment operators have right associativity.

(3) An expression is a combination of operators, constants, variables,
and functions. Each expression has a value and a data type. The evaluation
of expressions follows the order determined by operator precedence and
associativity.

(4) C supports two methods of type conversion: implicit (automatic)
and explicit (forced) conversion.

¢ Implicit type conversion: In mixed-type operations, the system

automatically converts data from a smaller-sized type to a larger-
sized type. When assigning values between different types, the
right-hand side of the assignment is automatically converted to
the type of the left-hand side.

+ Explicit type conversion: Achieved using a cast operator to force

a type conversion.

Essential Reading: C Programming Language

[1] operator: 34 4%

[2] variable: & &
[3] constant: ¥ &

[4] expression: & ik X,

[5] explicitly: B 2.3
[6] implicitly: [&-4-3#

[7] derived data type: #1i%
B EAR

[8] pointer type: 454+ £ A
[9] void type: = £ &

[10] unary operator: - B i&
At

[11] precedence: 1.5t 2%
[12] assignment operator:
IRAR 35 A

[13] arithmetic: LK

[14] relational: % %

[15] left associativity: % %
e

[16] ternary: = H

n WENE YR

[17] library: 2

[18] format control string:

Ho KA 5 AF

[19] top-down design: & T
& Tkt

[20] stepwise refinement: &
¥ tmtt

[21] modularity: £23z4t
[22] sequential structure:)it
F 45

[23] selection structure: it
e)

[24] loop structure: F& R
ZEH)

(5) Standard input/output refers to data entry via the keyboard and
output via the display, with the computer as the central processing unit. C’s
standard input/output functions are included in the stdio.h Mm],
¢ Getchar() and putchar() are character I/O functions, handling one

character at a time.
¢ Scanf() and printf() are formatted I/O functions, capable of
reading and writing data in various types and formats.

[18]

¢ The format control string" ™ is a crucial part of formatted 1/0

functions, ensuring correct data input and display.

2. The Three Basic Program Structures

The principles of structured programming mainly follow three key
concepts: top-down design"”, stepwise refinement””, and modularity™"). In

C, modularity is primarily achieved through functions. Practice has shown

that applying the three basic program structures—sequential structure®™,

24
L]—can

selection structure’”(branching structure), and loop structure

effectively solve problems in structured programming.

(1) Sequential Structure

Among the three basic program structures, the sequential structure
is the simplest and most fundamental flow control structure, executing
statements in a top-down order. A program module consists of Module 1
and Module 2, where Module 1 is executed first, followed by Module 2.
The entire module has a single entry point (top) and a single exit point
(bottom). Here, Module 1 and Module 2 can be a single statement or
multiple statements (including complex structures).

In structured programming, the sequential structure is the most
common flow control pattern. A complete C program can be viewed as a
sequential structure composed of three parts: data input, data processing,
and data output, executed in order.

For sequential structures, program execution strictly follows the
written order of statements. No matter how complex a C program is
or how many statements it contains, the overall execution remains
sequential. A C program starts execution from the first statement in the
main() function and proceeds until the last statement, making the entire

body of main() a sequential structure.
(2) Selection Structure

As the name suggests, the selection structure chooses one path
from multiple possible options based on a condition. In C, selection is

implemented using if and switch statements.

Unit One Programming Language q

First, a condition is evaluated.
¢ If the condition is true, Statement 1 is executed, and then the
program exits the selection structure.
¢ If the condition is false, Statement 2 is executed, and the program
exits afterward.
C provides two selection control statements:
¢ [f statements (with three forms: if, if-else, and if-else if) for
single-branch, double-branch, and multi-branch problems.
¢ Switch statements, primarily used for multi-branch selection
problems.
Once a branch is executed, the program exits the selection structure
and continues with the next statement. In switch statements, the break
keyword is required to exit the structure explicitly.

(8) Loop Structure

The loop structure allows a part of the program to be executed
repeatedly, making it essential in structured programming. Whether the
loop continues depends on a termination condition™'. Based on when the

condition is checked, loops are categorized into:
¢ Pre-test loops”® (while loops)—Check the condition before
execution.
¢ Post-test loops (do-while loops)—Check the condition after
execution.
C provides three loop control statements:
¢ While loop—Executes as long as the condition is true (best for
loops with an unknown number of iterations).
¢ Do-while loop—Executes at least once before checking the
condition.
¢ For loop—Typically used when the number of iterations is known.
The key feature of loops is that a block of code is repeatedly
executed as long as a condition holds true.
Almost any complex problem can be solved using these three basic
program structures. Proper application of these structures significantly

[27] [28]

improves code readability”” and program efficiency .

3. Functions in C Language

When solving complex problems, people often adopt a step-by-
step decomposition”” approach—dividing a large problem into smaller,
more manageable sub-problems and solving them individually. Similarly,
when designing complex applications, programmers typically break
down the entire program into smaller, functionally independent modules,

[25] termination condition:
e

[26] pre-test loop: & &
FIEEZS

[27] code readability: #2 /5
G 5T ik
[28] program efficiency: #£

[29] decomposition: 4~ f#

n WENE YR

[30] modular programming:
B AZ
[31] function-oriented: 15

[32] prototype: /& A
[33] preprocessor directive:

TRALIE B84

[34] manipulation: #Zk

[35] call: 98

implement them separately, and then integrate them like building blocks.
This divide-and-conquer strategy in programming is known as modular
programming””. In C, these modules are implemented as functions.
Functions are the fundamental building blocks of a C program,
which is why C is often referred to as a function-oriented”" language. A

C program consists of one or more functions, each performing a specific
task. Every C program must have exactly one main() function, where
execution begins. The main() function may call other functions before
eventually returning control to itself and terminating the program.

From the perspective of function definition, C functions can be
categorized into:

(1) Library Functions

Library functions are provided by the C compiler system. Users do
not need to define them or declare their types explicitly—they only need
to include the appropriate header file containing the function prototype*>.
Examples include frequently used functions like printf(), scanf(),
getchar(), putchar(), and sqrt().

To use a library function, the corresponding header file must be

included using the #include preprocessor directive™. This allows the

compiler to locate the function’s object code and generate an executable.
For example:
+ #include <math.h> for mathematical functions.

+ #include <string.h> for string manipulation™" functions.
(2) User-defined Functions

User-defined functions are created by programmers to fulfill specific
requirements. Unlike library functions, these must be fully defined in the
program, and their return type must be declared in the calling function
before they can be used.

From a functional standpoint, C functions can be divided into:

¢ Functions with return values—Return data to the caller.

¢ Functions without return values—Perform operations but do not

return data (declared as void).

From a parameter-passing perspective, functions can be categorized
as:

(1) Parameterless Functions

These functions do not accept any parameters in their definition,
declaration, or &11[3 *. No data is passed between the calling and called

functions. They are typically used to perform a fixed set of operations and
may or may not return a value.

Unit One Programming Language q

[36] formal parameter: 7%

(2) Parameterized Functions

Also known as functions with parameters, these functions include

[36] B N4
formal parameters™ " (parameters in definition) and require actual
parameters”” (arguments”* passed during the call). When called, [;:j actual parameter: 5%
/T

the calling function passes the actual parameter values to the formal

i . 38 t: Ak
parameters for use within the function. [38] argument: 24

Task 1 Read the passage above and then work in pairs to speak out the common
expressions given in brackets.

1. This section introduces the basic concepts of C programming, including data types,
(), (HE), (1I2%4F), and (Fik:), as well as
methods for writing simple programs using basic input/output functions.

2. The primary data types in C can be classified into four categories: basic data types,

(MR, (5EH2570), and the (=K.

3. Most operators have (ZE4561E), whereas (—J0),
___(=Ju), and assignment operators have right associativity.

4. The principles of structured programming mainly follow three key concepts: (=T
W), (BDEf),and _ (BiRfk).

5. Practice has shown that applying the three basic program structures— (M
4, (PE £ 454)(branching structure), and (1B 454)—can
effectively solve problems in structured programming.

6. The entire module has (—/ A4 (top) and (— a5
(bottom).

7. From the perspective of function definition, C functions can be categorized into:

(- pR%K)and (e R,

8. To use a library function, the corresponding header file must be included using the

(#include TALFERTE S).

Task 2 Read the sentences taken from the passage above and work in groups to
translate them into Chinese.

1. The data type explicitly or implicitly defines the range of possible values that a variable or

expression can take during program execution, as well as the operations allowed on those values.

2. In general, unary operators have higher precedence, while assignment operators have lower

precedence. Arithmetic operators have higher precedence than relational and logical operators.

n WENEWIOE

3. The evaluation of expressions follows the order determined by operator precedence and

associativity.

4. In mixed-type operations, the system automatically converts data from a smaller-sized type to a
larger-sized type.

5. C’s standard input/output functions are included in the stdio.h library.

6. A C program starts execution from the first statement in the main() function and proceeds until
the last statement, making the entire body of main() a sequential structure.

7. Once a branch is executed, the program exits the selection structure and continues with the next
statement. In switch statements, the break keyword is required to exit the structure explicitly.

8. The key feature of loops is that a block of code is repeatedly executed as long as a condition
holds true.

1.2 Advanced Reading: Code Similarity Detection

1. Research Prospects and Significance

Nowadays, with the increasing popularity of open-source software,

[1] unprecedented: % Z#T the volume of open-source code is growing at an unprecedented“] rate.
#lHg Whether in enterprises or research institutions, more and more developers
choose to copy and paste existing code to improve software development

efficiency. The rapid development of major open-source communities has

attracted countless users to share and collaborate on open-source projects,

[2] derivative: 474 leading to the creation of numerous derivative™™ software applications that

serve production, daily life, and scientific research. The introduction of

Unit One Programming Language q

open-source code offers two main advantages.

On one hand, the direct use of existing code significantly enhances
productivity and reduces costs. On the other hand, renowned open-
source projects are typically developed and maintained by top-tier"”’
developers and companies worldwide, ensuring high software quality and
standardized structure.

However, as software continues to evolve and its functionalities expand,
the negative impact of duplicated and cloned code on software quality,

usability”, and maintainability’ becomes increasingly apparent. Code

imported from open-source projects diminishes® developers’ understanding
and control over the overall software system. Conflicts may arise between
the external code and the system’s native code, and vulnerabilities'” in
the open-source code may be inadvertently™ introduced into the project
through copying, leading to the following issues.

(1) Increased additional development costs: In open-source
projects, factors such as high specialization and incomplete documentation
often require developers to spend more time understanding the code,
thereby raising additional development costs. Moreover, the large volume
of code in open-source projects means that reusing extensive associated

code during cloning can inflate” the total code base after development,

resulting in longer compilation""” times and higher memory requirements.
(2) Higher risk of vulnerabilities in developed software: While
open-source projects generally exhibits high quality and stability,

they may still contain undiscovered potential vulnerabilities. These

g . . : 11
vulnerabilities can increase system risks and compromise''"’

(3) Potential infringement'”’

security.
of open-source software copyrights:
When using open-source projects, compliance with open-source licenses
(e.g., GPL, BSD, Apache License) is required. For instance, copyright
issues must be considered when using code from GitHub. Unauthorized
use of open-source code during cloning may \M“” software copyrights
and lead to @“4] consequences.

To address these issues, researchers often employ code similarity
detection techniques to identify similar code in software engineering.

Code similarity detection is one of the fundamental tasks in the field
of software engineering, playing a critical role in plagiarism'"*’ detection,
license violation detection, software reuse analysis, and vulnerability
discovery.

2. Classification of Code Similarity Detection Approaches

The field of code similarity detection has witnessed significant
academic progress since the 1970s, with numerous detection tools and

[3] top-tier: TR & &%

[4] usability: =T A /H

[5] maintainability: *T 4
P

[6] diminish: %, 'V

[7] vulnerability: %351
[8] inadvertently: %7}

[9] inflate: %Ak

[10] compilation: %A%

[11] compromise: <&

[12] infringement: 42 4%

[13] violate: 3% &
[14] legal: &~k 4%

[15] plagiarism: 2] %

n WENE YR

[16] methodology: 7r & #
[17] repository: 4%

[18] exponentially: vA#54%
5

W

X,
19] imperative: 343749
20] component: £ 5% 3 5~
21] facilitate: $£3

22] citation: 5| A

23] expenditure: 7& %

e e e e e

]
]
]
]
]
]

24] lexical-based: % T3
b

[25] syntax-based: % T 3%
b

[26] semantic-based: & T
& LAY

[27] metric-based: 3 T &
A

[28] snippet: — I K #&
[29] segment: ¥

[30] parse: &+ HEATIE
EHAT

[31] suffix: E4&

[32] plain text: 5 5CA

methodologies''” being developed. As open-source code repositories'”

continue to expand exponentially'®, the need for large-scale similarity

[19]

detection solutions has become increasingly imperative" . Modern large-

scale detection systems serve multiple critical functions: they assist

[20]

developers in managing open-source components™ ' within projects,

enable tracing of software component origins, facilitate”' efficient code
search operations, and allow analysis of component citation™ frequency.
These capabilities collectively contribute to enhanced software quality
assurance and significant reductions in both development and maintenance
expenditures™. Contemporary code similarity detection approaches are
typically categorized into five distinct methodological tiers: text-based,

lexical-based”", syntax-based”, semantic-based”™ and metric-based"”

techniques.

(1) Text-based Detection Methodology

Text-based detection represents the earliest approach to code
similarity analysis. The methodology follows a systematic process: first,
preprocess the code snippets”*, such as removing spaces, comments, etc;
next, convert the code segments””’ into characters. If the characters of two
code segments are the same, then the two code segments are the same.
The advantage of this type of method is that the algorithm implementation
process is simple and can be used to detect the source code of almost all
programming languages; the disadvantage is that it cannot recognize the
syntax, semantics, and other information of the program, resulting in low

detection accuracy.
(2) Lexical-based Detection Method

Lexical-based detection method, also known as token based
detection method. Firstly, w[m] the code snippet into a sequence of
strings; next, check the token sequences in different code snippets. If
there are identical token sub-sequences, it indicates the existence of
code cloning. Common detection algorithms include Longest Common
Sub-sequence (LCS), @[3 " tree matching, Karp Rabin fingerprinting
algorithm, semantic indexing technology, etc. The advantage of
this type of method is that it can use lightweight tools, which can
be extended to detect code and plain text"’” in multiple programming
languages, and has lower spatiotemporal complexity compared to complex
detection algorithms based on syntax, semantics, etc; its disadvantage is
similar to text-based detection methods, which cannot recognize logical
information such as syntax and semantics of the program, resulting in

lower detection accuracy.

Unit One Programming Language q

(3) Syntax-based Detection Method

Syntax-based detection method, also known as tree-based detection
method. Firstly, by performing lexical and syntactic analysis on the
code, an abstract syntax tree of the source program is constructed; next,
compare the same or similar sub-trees to determine if code cloning has
been performed. The advantage of this type of method is that it can
recognize the syntax information of the program and improve detection
accuracy compared to text-based or token based detection methods; the
disadvantage is that the cost of constructing AST and matching language
sub trees is high, and as the program size expands, the time and space
complexity of the final detection method will be very high.

(4) Semantic-based Detection Method

Semantic-based detection method, is also known as graph-
based detection method. Firstly, by analyzing the syntax structure and
contextual”” environment of the code, a program dependency graph of the ~ [33] contextual: LT S 4%
source program is constructed; next, matching algorithms and program
slicing are used to obtain identical or similar sub-graph isomorphic”" [34] isomorphic: Fl##}
PDGs (Program Dependent Graphs), and then it is determined whether
cloning operations have been performed. The advantage of this type of
method is that it can recognize the semantic logic information of the
program and improve detection accuracy; its disadvantage is that the cost
of constructing PDG and sub-graph isomorphic PDG is relatively high,
and with the expansion of program size, the time and space complexity of
detection methods are constantly increasing.

(5) Metric-based Detection Method

The metric-based detection method is only applicable to fixed

B3 detection of code. Firstly, divide the code into fixed [35] granularity: ¥ /%

granularity
granularity comparison code units; next, extract metrics from the
comparison code units to determine whether code cloning has been
performed. Metrics include code variables, parameters, return values,
etc. The advantage of metric-based detection methods is high detection
accuracy and ease of code refactoring; its disadvantage is that it is limited
to fixed granularity detection, and if the granularity is too large, the

missed detection rate will be very high.

3. Code Similarity Detection Tool

There are detection methods based on text representation, such
as Dup method, Duploc method, and NICAD method. Although these
methods have the advantages of low cost and low computational

n WENE YR

overhead, they are only suitable for simple clone detection of fully
cloned types and cannot complete complex type detection. Lexical-based
detection techniques include CCFinder (X), D-CCFinder, CP-Miner, and
CCLearner. Although these methods improve the utilization of source
code information, they still ignore the structural information of the source
code during the detection process.

The methods based on syntax tree and metric are the main
representation methods based on syntax detection technology. Famous
tree based detection methods include CloneDR, Deckard, and CDLH,

[36] indicator: 44 % while indicator® based detection methods include the methods proposed

[37] traverse: Fit

[38] hybrid: %449 representation are graph-based detection technology and hybrid

=

by Mayrand et al. and Kontogiannis et al. These detection methods not
only provide detection accuracy, but also bring inevitable problems.
For example, tree-based detection methods have high overhead due to
the need to traverse” the tree structure, while indicator based detection
methods cannot guarantee high accuracy.

At present, the detection technologies based on semantic
(38
technology. Famous graph based detection techniques include the
methods proposed by Komon door et al. and the Duplix method, while
well-known hybrid techniques include the ConQAT method. In recent
years, semantic based deep learning methods have been widely studied
and applied, with representative ones including Code2Vec, Tree-CNN,
and Func2Vec. Based on current research results, semantic representation
based detection techniques have shown good detection performance for
all four types of clones, but there are also certain limitations, such as the
limited applicability of AST representation methods to tasks and difficulty
in transferring them to other tasks; the cost of constructing program
dependency graphs (PDGs) and isomorphic sub-graphs is relatively high,
and as the program size increases, the time and space complexity of
detection methods also continue to rise.

The Davey method is a metric-based detection method.

Task3 Read the passage above and then translate the expressions into Chinese or English

~N N L R W N =

in pairs.
. code similarity detection 8. spatiotemporal complexity
. plagiarism detection 9. BRAFEAERL
. suffix tree matching 10. T X
. vulnerability discovery 1. Tk
. preprocess the code snippets 12, BT RE
. longest common subsequence 13. K2R

. semantic indexing technology 14. JFiA)ik

Unit One Programming Language n

15. Rk 16. &l e

1.3

Deep Neural Networks (DNNs) emerged in the mid-1980s and
have been driving the development of artificial intelligence since 2006.
However, with the rapid advancement of edge intelligence in recent
years, traditional Artificial Neural Networks (ANNs) have revealed
several shortcomings. First, the success of ANNs has historically relied
on massive training datasets and extensive GPU computational resources.
For instance, the GPT-3 model boasts over 170 billion parameters and
was trained on 45TB of data. Second, traditional ANNs lack biological

[2]

interpret-ability!” and dynamic"”’ mechanisms within neurons, resulting

in weak capabilities for processing spatiotemporal” information.
Finally, ANN models are computationally inefficient and challenging to
implement on hardware, particularly portable devices. These limitations
have spurred the emergence of the third generation of neural networks
—Spiking Neural Networks' (SNNs). Research shows that at the 45nm
technology node, a multiply-accumulate operation in an ANN neuron

consumes 4.6pJ, whereas a spiking neuron’s accumulate operation
consumes only 0.9pJ, making SNNs more suitable for deployment on
low-power edge devices.

Neuromorphic computing™ is a biologically inspired computational

paradigm that seeks to mimic the functions of neurons and synapses'” in
both temporal and &tialm domains based on spike-events in the brain,
enabling highly energy-efficient computation. SNNs closely resemble'™
biological neural systems, using discrete values (spikes) to encode and
process data, offering an efficient and low-power computational solution
that aligns with"” the core principles of neuromorphic computing. In

[10]

biological neurons, a spike is generated when the cumulative™ ™ change in

membrane' potential from presynaptic stimuli'” exceeds a threshold"".

The rate of spike generation and the temporal patterns of spike sequences
carry information about external stimuli and ongoing computations.
In SNNs, spiking neurons process information only when new input
spikes arrive, making SNNs inherently more biologically plausible!*
and exhibiting advantageous features similar to real neural circuits,

such as analog'"”
[16]

computing capabilities, low power consumption,

rapid inference' ", event-driven operation, online learning, and massive

[171 .

parallelism' ”." These advantages make SNNs highly suitable for
deployment on edge devices. Currently, SNNs are the core model of

Hot Topic Reading: Neuromorphic Computing

[1] biological interpret-
ability: &4 T fE# b

[2] dynamic: 3 &4

[3] spatiotemporal: B = #

[4] Spiking Neural Networks:
Bk oAb 22 W 4

[5] neuromorphic comput-
ing: AP 295 At

[6] synapse: % fik

[7] spatial: = 4] #9

[8] resemble: %

[9] align with: &5 ------

cumulative: & 2

]
[11] membrane: i 1%
]

n WENE YR

[18] leverage: ALAF4E A

[19] Von Neumann: /% - %
i 8-4

[20] trade-off: 5 /&
[21] fidelity: 745

[22] sequential data: &})5
R

[23] inter-spike interference:

EL S

neuromorphic computing, holding the potential to fully leverage'* various
neuromorphic hardware platforms, enabling “near-memory computing”

19 .
1) architectures.

and breaking the bottlenecks of traditional Von Neumann

In recent years, significant progress has been made in neuromorphic
computing, but the edge deployment of SNNs still faces several
unresolved challenges. This paper will analyze and summarize the
limitations and challenges in current research and propose potential

solutions.

1. Deficiencies in Spiking Neural Network Models

Despite their superior energy efficiency and biological plausibility,
SNN models still have inherent limitations.

(1) Trade-off®” between Computational Performance and
Biological Fidelity™" in Spiking Neurons

Although the widely adopted Leaky Integrate-and-Fire (LIF)
model offers computational efficiency, its biological plausibility is lower
compared to other spiking neuron models. Thus, balancing the learning
capabilities and biological realism of spiking neurons remains a critical
research topic.

To address this challenge, exploring new learning rules inspired
by biological principles or refined mathematical modeling could lead
to better-designed spiking neurons. Alternatively, task-specific spiking
neurons can be developed. For example, Tempo-tron neurons, due to

2] and are

their temporal sensitivity, excel in processing sequential data
well-suited for speech or signal recognition tasks.Evolvable spiking
neurons, which adaptively adjust spike rates, are more suitable for power-

constrained edge devices.
(2) Limitations of Rate Coding and Temporal Coding

Rate coding and temporal coding each have strengths and
weaknesses. Rate coding focuses only on spike counts within a time
window, ignoring inter-spike interference™ and failing to fully utilize

spatiotemporal information in spike sequences. In contrast, many
temporal coding schemes better exploit timing information but rely on
complex synaptic functions, increasing power consumption and hindering
edge deployment.

A potential solution is combining rate and temporal coding, adopting
appropriate encoding methods across network layers or between neurons
based on task requirements. Current research has begun exploring this

direction, with hopes for deeper advancements. Additionally, designing

Unit One Programming Language n

hardware-compatible spike encoders is another promising avenue.

(3) Challenges in Training Spiking Neural Networks

Training SNNs effectively has always been a focal point in SNN

research. While the sparsity”” of spikes grants SNNs significant power

[25]

advantages, the non-differentiation””” of spike events prevents direct

application of back-propagation™, and no universally optimal training

method exists yet. For edge deployment scenarios”'where high-compute
training platforms are unavailable—especially if online learning is
required—metrics”* like memory resource utilization and weight update
complexity must be considered alongside™™ traditional performance
indicators””. Thus, selecting suitable training algorithms is a core
challenge for SNN edge deployment"".

Addressing this requires long-term optimization of existing training
methods. Variants of Spike-Timing-Dependent Plasticity (STDP) and
spike-based back-propagation are evolving, and ANN-to-SNN conversion
methods now achieve accuracy comparable to traditional ANNSs.
Furthermore, integrating advanced biological mechanisms into SNN
training is a promising direction for balancing biological plausibility"”
and learning capabilities.

(4) Inherent Flaws in Static Model Architectures

Many current SNN models combine traditional ANNs (e.g., CNNs
and RNNs) with SNNs. While these M[”] models inherit™ the
strengths of traditional architectures in processing image and sequential
data while retaining low-power spike-based communication, they fail
to fully address issues like high training complexity, weak interpret-

3] and poor tolerance in hardware fault in such complex ANN

models.

Exploring dynamic-topology SNNs is a viable solution”. Models
like Evolving Spiking Neural Networks (ESNNs) adaptively adjust
network structures, leveraging the unique advantages of neuromorphic

hardware platforms and better suiting embedded edge scenarios.

2. Challenges in Neuromorphic Hardware Platform Design

Beyond SNN model limitations, neuromorphic hardware platforms
face significant design hurdles.

(1) High Barrier to Hardware Programming

For example, programming on FPGA platforms requires Al
researchers to understand hardware description languages and circuit
principles, and the lack of mature software frameworks like TensorFlow

[24] sparsity: #w ik

[25] non-differentiation: 1~
T fokE

[26] back-propagation: A
IPREE

[27] scenario: ¥ &
[28] metric: #5847

[29] alongside: f£------ Fil
[30] indicator: 45 4%
[

]
1
]
31] deployment: 3%

[32] plausibility: &32H

[33] hybrid: #4-4%
[34] inherit: 47X

[35] interpretability: T f#%
B

[36] viable solution: ¥ 47 %
R

n WENEWIOE

[37] non-volatile: 3%
KR

38] facilitate: #£i

39] compatibility: F& A
40] stability: &% M

41] synthesis: &%,

42] description: &

[
[
[
[
[
[43] scalable: 7T ¥ & &%

]
]
]
]
]
]

[44] fabrication:)&

[45] memristor array: [Z [
E7

[46] bolster: % #F
[47] robustness: 24k

1.4 Listening: Data Representation

Task 4 Listen to the tape with some blanks for you to fill in.

At the end of last lecture, we started introducing some of the pieces you want to

or PyTorch raises development barriers. For neuromorphic chips and

-1 37
novel non-volatile™”

memory devices, developers must use specialized
tools and sometimes even possess knowledge of physical materials.
Developing comprehensive neuromorphic computing tool-chains is
crucial for SNN edge deployment. Efficient tool-chains can streamline
development and facilitate” research. Existing SNN software frameworks
and simulation tools need continuous updates for better compatibility"”

I High-level Synthesis'"'"! (HLS) tools, which convert high-

[42]

and stability
level code into hardware descriptions”~ and automatically generate
circuits, can lower FPGA deployment barriers. Additionally, designing

[43

scalable'™ hardware mapping methods is a promising approach.

(2) Performance Bottlenecks in Neuromorphic Hardware

Most neuromorphic hardware platforms are low-power, small-area
devices with limited resources like memory, making them unsuitable for
large-scale, complex models. Moreover, traditional CMOS circuits are
constrained by 2D connections and limited interconnect metals/routing
protocols, posing challenges in emulating 3D biological brain structures
—a major bottleneck for current neuromorphic chips.

Future directions include exploring advanced fabrication'*" processes
to transcend CMOS limitations, developing more efficient memristor
mm] , or designing hybrid architectures that combine ANNs and
SNNs to improve overall performance.

(3) Hardware Platform Reliability Issues

Studies show that neural networks, including SNNs—often
assumed to inherit the fault tolerance of biological brains—exhibit
limited robustness in recent fault injection experiments. Since underlying
hardware support is not fully reliable, many SNN deployments fail to
realize the full potential of neuromorphic hardware.

To enhance edge deployment reliability, solutions may involve
designing more stable neuromorphic hardware inspired by biology or
improving SNN models with advanced fault-tolerance mechanisms to

[46]

bolster™*” robustness'*” in edge Al applications.

do. And I want to remind you of our goal. We’re trying to describe processes. We want

Unit One Programming Language n

to have things that deduce new kinds of information. So we want to write programs to do that. If we’re
going to write programs, we need at least two things: we need some 1. for fundamental
data. And we saw last time two examples of that. And the second thing we’re going to need, is we’re
going to need a way to give 2. to the computer to 3. that data. We need to
give it a description of the recipe. In terms of primitive data, what we saw were two kinds. Right?
4. and 5. . A little later on in the lecture we’re going to introduce
a third kind of value, but what we’re going to see throughout the term is, no matter how
complex a data structure we create, and we’re going to create a variety of data structures,
6. all of them have their basis, their atomic level if you like, are going to be some
combinations of numbers, of strings, and the third type, which are 7. , which
I’m going to introduce a little later on in this lecture. And that kind of makes sense right?
Numbers are there to do 8. things, strings are our fundamental way of representing
9. information. And so we’re going to see how to combine those things as we go
along. Second thing we saw was, we saw that associated with every 10. value was a
11. . And these are kind of obvious, right? Strings are strings. For numbers,we had some
12. ; we had 13. , we had 14. .We’ll introduce a few more as we go
along. But those types are important, because they tell us something about what we want to do when
we want to put them together. OK, but nonetheless, | want to stress we have both a 15. ,
yeah, and a type. All right. Once we have them, we want to start making 16. out of them.
We want to put pieces together. And for that, we combine things in expressions. And what we saw as
expressions are formed of 17. and 18. . And the simple things we did were the sort
of things you’d expect from numerical things. Now I want to stress one other nuance (Zfif#(2= 51)
here, which we some examples of this. Initially we just typed in expressions into the
19. ; that is, directly into Python. And as I suggested last time, the interpreter
is actually a program inside of the machine that is basically following the rules we’re
describing here to deduce the value and print it up. And if we type directly from into the
20. , it essentially does an eval and a print. It 21. , and it prints. Most of the time,
we’re going to be doing expressions inside of some piece of code, inside of a 22. , which
is the Python word for program. In there, I want to make this distinction, this nuance: the evaluator is
still going to be taking those expressions and using its rules to get a value, but it’s not going to print

them back out. Why? Because typically, you’re doing that to use it somewhere else in the program.

It’s going to be stored away in a 23. . It’s going to be stuck in a data structure. It’s going to
be used for a side effect. So, inside of code, or inside of a script, there’s no 24. , unless we
make it 25. . And that’s a little bit down in the weeds.

1.5 Writing: How to Write a Personal Resume and
Practise Based on the Given Examples

The outline for a resume structured the order of the resume headings. Each heading is followed
by a paragraph and the information you provide within it. To build your resume, you have to decide

n WENE YR

on its format and its sections as the frame of your resume outline. This article provides sample resume
outlines—examples of resume structure and options for headings. It also discusses the information to
include within each section and sub-sections. The outline of the resume forms the type of the resume
you select, which depends on your professional situation.

Mastering a Resume Outlines

Contact Information:
¢ Name
¢ Address: Street, City, State, Zip
¢ Phone Number
¢ Email Address
Summary of Qualifications: Highlight your key skills, accomplishments, and experiences relevant
to the desired position. Focus on what makes you a strong candidate and briefly mention your career
objectives.
Core Competencies: List your core competencies or areas of expertise. Include specific skills,
knowledge, and abilities that align with the job requirements.
Professional Experience:
Job Title: Company Name, Location (Dates)
¢ Describe your responsibilities, achievements, and contributions in this role. Use bullet points
to clearly outline your accomplishments and quantify them whenever possible.
¢ Provide a brief summary of your responsibilities and accomplishments for each position you
held. Emphasize transferrable skills and experiences.
Education:
Degree: Major, Institution Name, Location (Year)
Include relevant degrees, certifications, and diplomas. Mention any honors, awards, or special
achievements.
Additional Training and Certifications:
List any professional development courses, workshops, or certifications that enhance your
qualifications for the targeted position. Include the institution, location, and year of completion.
Skills:
¢ Technical Skills: List specific technical skills relevant to the job, such as programming
languages, software proficiency, or industry-specific tools.
+ Transferable Skills: Highlight soft skills that demonstrate your ability to adapt, communicate,
problem-solve, and work effectively in a team or leadership role.
Languages:
Indicate your language proficiency, including fluency in multiple languages if applicable.
References:
¢ Available upon request.
+ State that references can be provided upon request. Ensure you have obtained permission from
the individuals you intend to use as references.

Unit One Programming Language n

A Sample

The following professionals can use this resume example as a draft: Computer Specialist/
Programmer Analyst, Computer Systems Analyst/Programmer and Computer Systems Programmer
Analyst.

Job Description:Computer programmers design a set of programs that acts as instructions for a
computer to process information. The work of a programmer depends upon the type of project he/she is
assigned and the complexity of the work. According to the objective or the job description, he prepares
the flow charts.

Computer Applications Programmer
Resume Example
[Full Name]
[Street, City, State, Zip]
[Phone Number]
[Email Address]

COMPUTER APPLICATIONS PROGRAMMER

Accomplished computer programmer with 9 years’ experience in .NET software applications
and an in-depth knowledge of programming languages for development and programming;
technical expertise includes:

J2EE, MS.NET, SQL SERVER | Oracle/SQL | ASP Controls/ .NET 3.5
SAP | C# .NET 3.5 MICROSOFT VISUAL STUDIO |
ASP.NET 3.5 | JAVA

Functional Skills

¢ Critical reasoning to forecast the strength and weakness of a program.

+ Effectively handle concurrent multiple assignments.

¢ Detail-oriented and highly articulate.

¢ Excellent problem solving skills.

Professional Experience

BYT S/W Applications Wilmington, DE 2006—Present

Applications Programmer

Worked on several challenging projects related to education, government and medical fields.
Consulted with clients and engineers to solve problems and recommend changes in programs.

+ Assessed the objective of the project by studying the job description, and prepared flow

charts accordingly.

¢ Coordinated with system analysts and software engineers in completing complex projects.

¢ Monitored the program and made required changes to produce smooth and efficient run.

¢ Conducted tests and trial runs to ensure that the program produced the desired results in a

n WENE YR

timely manner.

¢ Documented the program and clarified it with instructions, resulting in easily
comprehended coding.

Selected Achievements

¢ Successfully completed (X) projects in the past year.

¢ Managed to increase the running speed of (X) programs by (X)%.

¢ Changed (X) method to (Y) method in order to increase efficiency and customer
satisfaction.

¢ Initiated and completed a project that resulted in increased revenues of (X).

Educational Qualifications

Massachusetts Institute of Technology Cambridge, MA 2001—2005
Computer Science & Computer Engineering, Technology
Saint Cloud Technical College, BSc. 1998—2000

Task 5 Write a resume according to your own experience and check up your
writings with your partner.

