
第  单元5
循环结构———程序段重复执行

  结构化程序设计有顺序、选择和循环三种结构。在实际应用中,许多问题都会涉及重复

执行一些操作。例如,级数求和类问题、迭代递推类问题等。程序中的某段代码有被重复执

行的需求,代码被重复执行就是循环结构。循环结构中某个代码段被重复执行,执行次数可

由某一条件来控制,这个条件称为循环条件,被重复执行的代码段称为循环体。本单元主要

介绍三种循环结构语句while、do-while、for和循环控制语句break、continue的使用。

第5.1关 认识循环
􀪋􀪋􀪋􀪋􀪋􀪋􀪋

知识点5.1.1 三种循环语句

1.while循环语句

  C语言中用while语句来实现“当型”循环结构,它的一般形式如下:

 while(循环条件){

  循环体;

}

图5-1 while循环

语句流程

说明:
(1)首先求解循环条件,若为真,则执行循环体,否则结束循环。
(2)循环体执行完成,自动跳转到循环开始(while)处,再次

求解循环条件,如果成立就开始下一次循环,如此往复。
(3)循环体只能是一个语句。如果有多个语句,则应该用花

括号将其括起来使之成为一个复合语句;如果循环体只是一个语

句,花括号也可以省略。

while循环语句的流程如图5-1所示。

示例代码5.1.1.1 输出从1加到10的和

示例代码如下:

 #include<stdio.h>

int main(){

  int s,i;

  s=0;

第5单元
知识导图

第5.1关



 第 5 单元 循环结构———程序段重复执行 111  

   i=1;

  while(i<=10){

    printf("%d,",i);

    s=s+i;

    i=i+1;

  }

  printf("\nS=%d",s);

  return 0;

}

2.do-while循环语句

C语言还提供了do-while语句用来实现“直到型”循环结构,它的一般形式如下:

 do{

  循环体;

}while(循环条件);

说明:
(1)在此结构中do相当于一个标号,标志循环结构开始。
(2)首先无条件地执行一次循环体,然后求解循环条件,若为真,则跳转到do处再次执

行循环体;若循环条件为假,则结束循环。

图5-2 do-while循环语句流程

(3)循环体只能是一个语句。如果有多个语句,则应该

用花括号将其括起来使之成为一个复合语句;如果循环体只

有一条语句,花括号可以省略。
(4)do-while结构整体上是一条语句,所以while的括号

后应加上分号。

do-while循环语句的流程如图5-2所示。
以上两种循环比较,可以理解为:while循环语句是在入

口处判断条件,do-while循环语句是在出口处判断条件。

示例代码5.1.1.2 输出从1加到10的和

示例代码如下:

 #include<stdio.h>

int main(){

  int s,i;

  s=0;

  i=1;

  do{

    printf("%d,",i);

    s=s+i;

    i=i+1;

  }while(i<=10);

  printf("\nS=%d",s);

  return 0;

}



112   C 语言程序设计(第 2 版) 

3.for循环语句

除了while循环语句和do-while循环语句,C语言还提供了另一个使用更为广泛的循

环语句———for循环语句。for循环语句的一般形式如下:

 for(表达式 1;表达式 2;表达式 3){

  循环体;

}

说明:
(1)首先求解表达式1(该表达式只在这一步骤处被求解一次)。
(2)求解表达式2(循环条件),若为真则执行循环体,否则结束for语句。
(3)循环体执行结束后,再求解表达式3,然后转向步骤(2)。
(4)循环体如果只是一条语句,花括号可以省略。
for语句的流程如图5-3所示。

图5-3 for循环语句流程

示例代码5.1.1.3 输出从1加到10的和
示例代码如下:

 #include<stdio.h>

int main(){

  int s,i;

  s=0;

  for(i=1;i<=10;i++){

    printf("%d,",i);

    s=s+i;

  }

  printf("\nS=%d",s);

  return 0;

}

引导任务5.1.1 从1加到N

任务描述:
有数学王子之称的著名德国数学家高斯(1977—1855),和阿基米德、牛顿、欧拉并列称



 第 5 单元 循环结构———程序段重复执行 113  

为世界四大数学家,一生成就极为丰硕。
高斯10岁的时候,数学课上老师布置了一道题数学题:从1一直加到100等于多少?

全班只有高斯算出了答案5050,而且很快。起初老师并不相信高斯算出了正确答案,高斯

就解释他是如何找到答案的,他发现:1+100=101,2+99=101,3+98=101,……,49+
52=101,50+51=101,一共有50对和为101的数,所以答案是101×50=5050。

现在,老师给你布置一道编程题,输出从1加到N的和。你能做到吗?
输入格式:
一个整数N(1≤N≤10000)。
输出格式:
一个整数,从1加到N的和。
输入样例:

1
输出样例:

1

输入样例:

10
输出样例:

55

输入样例:

100
输出样例:

5050

输入样例:

1000
输出样例:

500500
任务分析:
我们都知道,从1到n的自然数是一个等差数列,首项是1,公差也是1,共n项。所以

根据等差数列的求和公式S=
(a1+an)n
2

,很容易得到从1加到n的和为
n(n+1)
2

。

任务代码5.1.1 从1加到N_解法1_根据等差数列求和公式直接求解

解法1:根据等差数列求和公式求解。任务代码如下:

 #include<stdio.h>

int main(){

  int n,s;

  scanf("%d",&n);       //输入整数 n

  s=n*(n+1)/2;        //公式直接计算从 1加到 n 的和 s

  printf("%d",s);       //输出结果

  return 0;

}

代码测试与分析:
在DevC++中执行以上代码:
输入:1     输出:1    (测试边界数据,可能的最小值)
输入:10   输出:55
输入:100  输出:5050
输入:1000  输出:500500
输入:100000 输出:5000050000
以上代码读者一定都能理解,现在讨论另一种解法,就是首先设置一个和变量s=0,用

来存储最终的和,初值为0。然后设置计数器变量i,让i的值从1到n变化,每一次都重复

执行把i累加到变量s里(s=s+i)。最后,变量s的值就是所求,输出即可。
“每一次都重复执行把i累加到变量s里”,这就是重复操作,计数器i从1数到n是重



114   C 语言程序设计(第 2 版) 

复的次数。这里的重复操作就是循环的思想。我们可以用下面的算法来描述输出从1加到

n的和的求解过程(算法流程见图5-4):

图5-4 算法流程图

(1)输入变量n,定义和变量s=0(初值),计数器变量i=1(初值)。
(2)如果i<=n成立就向下执行,如果不成立转到步骤(6)。
(3)s=s+i。
(4)i=i+1。
(5)转到步骤(2)。
(6)输出s。
以上就是“求解从1加到n的和”算法的形式化描述,其中的步骤(3)和步骤(4)就是被

重复执行的部分,称为循环体。计数器变量i称为循环变量,i<=n称为循环条件。

任务代码5.1.1 从1加到N_解法2_使用while循环

解法2:使用while循环语句求解。任务代码如下:

 #include<stdio.h>

int main(){

  int n,s,i;     //定义变量

  scanf("%d",&n);   //输入整数 n            ---算法步骤(1)

  s=0; i=1;      //和变量 s,计数器变量 i 赋初值  ---算法步骤(1)

  while(i<=n){    //满足循环条件就进入循环      ---算法步骤(2)

    s=s+i;     //将变量 i 的值累加到和变量 s 中   ---算法步骤(3)

    i=i+1;     //计数器 i 向后计数         ---算法步骤(4)

  }          //                 ---算法步骤(5)

  printf("%d",s);   //输出结果             ---算法步骤(6)

  return 0;

}

代码测试与分析:



 第 5 单元 循环结构———程序段重复执行 115  

在DevC++中执行:
输入:1    输出:1    (测试边界数据,可能的最小值)
输入:10   输出:55
输入:100  输出:5050
输入:1000  输出:500500
结合while语句的语法规则,结合上文中的算法,这个代码是不是很好理解呢?
这就是让循环变量i从1到n,循环体执行n次的代码框架,可以称之为计次循环(循环

次数固定可数),请你一定要牢记这个结构:

 i=1;        //循环变量赋初值

while(i<=n){   //进入循环的条件

  循环体;

  i=i+1;    //循环变量的增量

}

任务代码5.1.1 从1加到N_解法3_使用do-while循环

解法3:使用do-while循环语句求解。任务代码如下:

 #include<stdio.h>

int main(){

  int n,s,i;

  scanf("%d",&n);   //输入整数 n

  s=0; i=1;      //和变量 s 赋初值 0,计数器变量 i 赋初值 1

  do{         //循环开始的标记

    s=s+i;     //将变量 i 的值累加到和变量 s 中

    i=i+1;     //计数器 i 向后计数

  }while(i<=n);    //满足循环条件就再次进入循环

  printf("%d",s);   //输出结果

  return 0;

}

代码测试与分析:
在DevC++中执行:
输入:1   输出:1    (测试边界数据,可能的最小值)
输入:10   输出:55
输入:100  输出:5050
输入:1000  输出:500500
解法3的代码同样可以实现任务要求的功能,程序的原理和执行过程和解法2是完全

一致的,只不过do-while循环是先执行一次循环体,再判断循环条件,对于输入的n>=1
时,两种解法的输出结果都是一致的,都可以实现题目要求。

任务代码5.1.1 从1加到N_解法4_使用for循环

解法4:使用for循环语句求解。任务代码如下:

 #include<stdio.h>

int main(){



116   C 语言程序设计(第 2 版) 

   int n,s,i;

  scanf("%d",&n);    //输入整数 n

  s=0;          //和变量 s 赋初值 0

  for(i=1;i<=n;i++){   //典型的计次循环,i 从 1开始到 n 结束,每次加 1

    s=s+i;       //循环体

  }

  printf("%d",s);    //输出结果

  return 0;

}

代码测试与分析:
在DevC++中执行:
输入:1   输出:1    (测试边界数据,可能的最小值)
输入:10   输出:55
输入:100  输出:5050
输入:1000  输出:500500
从以上代码和测试结果可以看出,for循环也可以方便地表达计次循环,“for(i=1;i<=

n;i++)”清楚地说明了循环变量i从1开始,到n结束,每次加1。
4.while循环和for循环的转换

解法4代码从执行逻辑上看,先执行i=1,然后进入循环“i<=n→s=s+i→i++”,直
到i<=n不成立。这跟while语句的逻辑是相同的,可见while循环和for循环是可以互相

转换的,具体情形如表5-1所示。

表5-1 while循环和for循环的转换

while循环 for循环

表达式1;
while(循环条件表达式2){
  循环体;
  表达式3(循环变量自加或自减);
}

for(表达式1;循环条件表达式2;表达式3){
  循环体;

}

s=0;
i=1;
while(i<=10){
  s=s+i;
  i++;
}

s=0;

for(i=1;i<=10;i++){
  s=s+i;

}

  while循环和for循环可以方便地互相转换,在设计程序时可以根据问题实际需要选择

一种使用。
你要牢记,让循环变量i从1变到n,循环体执行n次的计次循环(循环次数固定可数)

代码框架如下:

 for(i=1;i<=n;i++){

  循环体;

}



 第 5 单元 循环结构———程序段重复执行 117  

5.穷举法

穷举法,又称枚举法、列举法,是一种在计算机科学和数学等领域广泛应用的基本算法

策略。穷举法是指在一个有穷可能解的集合中,按照一定的顺序,逐个地对每一个可能的解

进行考察检验,从中找出符合要求的解。
例如,输出从1加到N的和,可以将1到N的所有整数一一列举(穷举),每个数都累加

到变量S中,最后S中的数就是所求。
例如,输出自然数N的阶乘,需要将1到N的所有整数一一列举(穷举),每个数都累乘

到变量F中,最后F中的数就是所求。
例如,输出1到N的奇数,可以将1到N的所有整数一一列举(穷举),符合条件(奇数)

就输出。
例如,输出1到 N的素数,需要将1到 N的所有整数一一列举(穷举),是素数的就

输出。
例如,输出N的所有约数,需要将1到N的所有整数一一列举(穷举),如果是N的约

数就输出。
穷举法简单直接,不需要复杂的算法设计和数学推导,易于理解和实现。穷举法结果准

确,只要解空间是有限的,且枚举过程正确,就一定能得到问题的所有解或最优解。
穷举法当解空间规模较大时效率较低,但它是一种基础且重要的算法思想,在很多实际

问题中仍然有着广泛的应用,尤其是在对效率要求不高、解空间较小的场景中,穷举法往往

能发挥重要作用。

6.goto语句*

C语言中的goto语句可以实现无条件跳转,与标号语句一起可以构成循环。例如,以
下代码也可以实现从1加到N,请自行分析。

任务代码5.1.1 从1加到N_解法5_使用goto语句求解

解法5:使用goto语句求解。任务代码如下:

 #include<stdio.h>

int main(){

  int n,s,i;

  scanf("%d",&n);

  s=0;

  loop:         //定义标号语句,标识位置 
    s=s+i;

    i++;

    if(i<=n)

      goto loop;   //跳转到标号 loop 处

  printf("%d",s);

  return 0;

}

goto虽然可以方便地实现跳转,但过度使用会使程序的控制流程变得混乱,难以理解

和维护,导致代码的可读性极差,并增加调试难度。所以虽然C语言保留了goto语句,现在

几乎没有人使用,以更好地保持程序的可读性、可维护性和可扩展性。



118   C 语言程序设计(第 2 版) 

知识点5.1.2 循环控制语句

C语言提供了两个控制循环进程的语句:break语句和continue语句。

1.break语句

break语句用于从循环体内跳出循环结构。当程序执行到break语句时,会立即跳出循

环结构,结束循环。

2.continue语句

continue语句用于结束本次循环,开始下次循环。当执行到continue语句时,会立即结束

本次循环(跳过循环体中后面的部分不执行),直接跳转到循环开始处,执行下一次循环。

任务代码5.1.1 从1加到N_解法6_使用循环控制语句

解法6:使用循环控制语句求解。任务代码如下:

 #include<stdio.h>

int main(){

  int n,s,i;

  scanf("%d",&n);    //输入整数 n

  s=0; i=1;       //和变量 s 赋初值 0,计数器变量 i 赋初值 1

  while(1){       //进入循环时相当于无条件(1为真)

    s=s+i;        //累加

    i=i+1;        //计数器加 1

    if(i>n) break;    //i>n 时跳出循环

    else  continue;  //删除这行语句,程序功能会有变化吗,为什么?

  }

  printf("%d",s);    //输出结果

  return 0;

}

代码分析:
以上代码中进入循环时的条件为1(真),表示永远允许进入循环,循环体内通过if语句

判断,如果i>n成立就执行break语句跳出循环。
请思考:删除程序中if语句的else分支,程序功能会有变化吗? 为什么? 应用do-

while语句、for语句和控循环制语句结合,你还有哪些不同的解法呢?

引导任务5.1.2 找奇数

任务描述:
输入一个正整数N,输出从1到N所有的奇数。
输入格式:
一个正整数,不大于10000。
输出格式:
输出从1到N所有的奇数,用逗号分隔。
输入样例:

20



 第 5 单元 循环结构———程序段重复执行 119  

输出样例:

1,3,5,7,9,11,13,15,17,19
输入样例:

100
输出样例:

1,3,5,7,9,11,13,15,17,19,21,23,25,27,29,31,33,35,37,39,41,43,45,47,49,51,

53,55,57,59,61,63,65,67,69,71,73,75,77,79,81,83,85,87,89,91,93,95,97,99
任务分析:
输出从1到N的所有奇数,很明显问题的解在[1,N]内,可以使用穷举法一一列举从1

到N的所有整数,如果是奇数,则输出。这也是典型的计次循环问题,循环的次数事先是已

知的,是一一可数的。

任务代码5.1.2 找奇数_解法1_使用for语句穷举(有瑕疵的代码)
解法1:使用for语句穷举(有瑕疵的代码)。任务代码如下:

 #include<stdio.h>

int main(){

  int n,i;

  scanf("%d",&n);     //输入整数 n

  for(i=1;i<=n;i++){   //典型的计次循环

    if(i%2==1)     //如果是奇数,则输出并加逗号

      printf("%d,",i);

  }

  return 0;

}

代码测试与分析:
在DevC++中执行:
输入:10  输出:1,3,5,7,9,
输入:21  输出:1,3,4,7,9,11,13,15,17,19,21,
输入:1  输出:1,
从1到n的循环是典型的计次循环问题,用for语句很合适。for(i=1;i<=n;i++)

表示循环变量i从1开始,到n结束,每次加1,事先就可以明确得知这是一个计次循环问

题,共循环n次。
在每次循环的循环体内,判断如果i是奇数就输出i,根据题目中的要求,每个i的后面

加一个逗号。
从测试输出结果可以看出,以上程序的输出实际和题目的要求相比,在最后一个奇数的

后边多了一个逗号,所以这个代码在线上平台中提交是通不过的,显示:答案错误。
这个问题如何解决呢? 方法就是对逗号的输出单独控制,因为第1个输出肯定是1,是

已知的。所以可以使用这样的逻辑:控制在1的前面不输出逗号,其他数据的前面输出逗

号,这个问题就解决了。

任务代码5.1.2 找奇数_解法2_使用for语句穷举(正确的代码)
解法2:使用for语句穷举(正确的代码)。任务代码如下:


