图书前言

强化学习是人工智能的核心内容之一。掌握强化学习需要概率与统计、运筹学、泛函分析等数学知识,而且强化学习发展迅速、知识更新快,这导致学习强化学习是一件有挑战性的事。本书旨在帮助读者在短时间内理解和运用强化学习。

本书的主要特点是:点明问题,以问题为驱动组织内容;注重解释算法的原理;语言力求简练与严谨。

本书主要包括以下内容:基于模型的强化学习、基于采样 -估计的强化学习、基于逼近理论的强化学习和深度强化学习。前三部分主要参考 Richard S. Sutton和 Andrew G. Barto的书 Reinforcement Learning: An Introduction以及 David Silver的课件。第四部分的深度学习参考了吴恩达的深度学习公开课以及 David Silver的深度强化学习讲义和相关论文。多智能体强化学习主要参考 Wang Jun等的论文。本书内容由柯良军统稿,王小强整理并解读了部分程序。在写作过程中,作者参考了《机器学习》《强化学习数学基础》以及《深入浅出强化学习》等相关书籍;同时,作者也大量阅读了网络资料。本书在吕同富的 Latex模板基础上用 TexLive写作。在此,作者对以上所有人员表示感谢!本书得到国家自然科学基金项目(编号: 61573277)的资助,在此表示诚挚感谢!

作者综合各种素材重新组织内容,从不同的视角将强化学习呈现给读者,衷心希望读者开卷有益!

柯良军 

2019年 11月