





作者:刘顺祥
定价:79.8元
印次:2-6
ISBN:9787302553052
出版日期:2020.06.01
印刷日期:2023.12.22
图书责编:王金柱
图书分类:零售
本书以Python 3.7版本作为数据分析与挖掘实战的应用工具,从Python的基础语法开始,陆续介绍有关数值计算的numpy、数据处理的pandas、数据可视化的matplotlib和数据挖掘的sklearn等内容。全书共涵盖15种可视化图形以及10个常用的数据挖掘算法和实战项目,通过本书的学习,读者可以掌握数据分析与挖掘的理论知识和实战技能。 本书适于统计学、数学、经济学、金融学、管理学以及相关理工科专业的本科生、研究生使用,也能够提高从事数据咨询、研究或分析等人士的专业水平和技能。
刘顺祥,统计学硕士,“数据分析1480”微信公众号运营者。曾就职于大数据咨询公司,为联想、亨氏、美丽田园、网鱼网咖等企业项目提供服务;曾在唯品会大数据部担任数据分析师一职,负责电商支付环节的数据分析业务。
前 言 为什么写这本书 随着大数据时代的演进,越来越多的企业在搜集数据的同时,也开始关注并重视数据分析与挖掘的价值,因为他们正尝到这项技术所带来的甜头。例如,通过该技术可以帮助企业很好地认识其用户的画像特征,为用户提供个性化的优质服务,进而使用户的忠诚度不断提升;通过该技术提前识别出不利于企业健康发展的“毒瘤”用户(如黄牛群体、欺诈群体等),进而降低企业不必要的损失;通过该技术可以为企业实现某些核心指标的判断和预测,进而为企业高层的决策提供参考依据等。企业对数据分析与挖掘技术的重视就意味着对人才的重视,这就要求希望或正在从事数据相关岗位的人员具备该技术的理论知识和实战能力。 Python作为大数据相关岗位的应用利器,具有开源、简洁易读、快速上手、多场景应用以及完善的生态和服务体系等优点,使其在数据分析与挖掘领域中的地位显得尤为突出。基于Python可以对各种常见的脏数据完成清洗、绘制各式各样的统计图形,并实现各种有监督、无监督和半监督的机器学习算法的落地,在数据面前做到游刃有余,所以说Python是数据分析与挖掘工作的不二之选。根据多家招聘网站的统计,几乎所有的数据分析或挖掘岗位都要求应聘者掌握至少一种编程语言,其中就包括Python。 纵观国内的图书市场,关于Python的书籍还是非常多的,它们主要偏向于工具本身的用法,如关于Python的语法、参数、异常处理、调用以及开发类实例等。但是基于Python的数据分析与挖掘书籍并不是特别多,关于这方面技术的书籍更多的是基于R语言等工具。本书将通过具体的实例讲解数据的处理和可视化技术,同时也结合数据挖掘的理论知识和项目...
第1章 数据分析与挖掘概述 1
1.1 什么是数据分析和挖掘 1
1.2 数据分析与挖掘的应用领域 2
1.2.1 电商领域——发现破坏规则的“害群之马” 2
1.2.2 交通出行领域——为打车平台进行私人订制 3
1.2.3 医疗健康领域——找到最佳医疗方案 3
1.3 数据分析与挖掘的区别 4
1.4 数据挖掘的流程 5
1.4.1 明确目标 5
1.4.2 数据搜集 6
1.4.3 数据清洗 6
1.4.4 构建模型 7
1.4.5 模型评估 7
1.4.6 应用部署 7
1.5 常用的数据分析与挖掘工具 8
1.6 本章小结 9
1.7 课后练习 9
第2章 从收入的预测分析开始 10
2.1 下载与安装Anaconda 10
2.1.1 基于Windows系统安装 11
2.1.2 基于Mac系统安装 12
2.1.3 基于Linux系统安装 14
2.2 基于Python的案例实战 14
2.2.1 数据的预处理 14
2.2.2 数据的探索性分析 16
2.2.3 数据建模 19
2.3 本章小结 29
2.4 课后练习 29
第3章 Python基础与数据抓取 30
3.1 数据结构及方法 30
3.1.1 列表 30
3.1.2 元组 36
3.1.3 字典 36
3.2 控制流 40
3.2.1 if分支 40
3.2.2 for循环 41
3.2.3 while循环 43
3.3 字符串处理方... 查看详情
结合Python中成熟的Numpy、Pandas、MatPlotLib、Sklearn、Seaborn、Statsmodels和SciPy模块,实现数据分析与挖掘中关于数据的清洗、整理、探索、可视化、建模和评估等流程的操作,让每一位对数据分析和挖掘的从业者或感兴趣的读者都能从中学到所需的内容。
详解十大常用数据挖掘算法及案例实战,如多元线性回归的预测模型、决策树分类模型、SVM分类模型、GBDT分类模型、K均值聚类模型等,基本覆盖用人单位对常用挖掘算法的需求。 查看详情