





定价:238元
印次:1-5
ISBN:9787302628507
出版日期:2023.06.01
印刷日期:2025.04.10
图书责编:栾大成
图书分类:零售
数据科学和机器学习已经深度融合到我们生活的方方面面,而数学正是开启未来大门的钥匙。不是所 有人生来都握有一副好牌,但是掌握“数学 + 编程 + 机器学习”绝对是**。这次,学习数学不再是为了考试、分数、升学,而是投资时间、自我实现、面向未来。为了让大家学数学、用数学,甚至爱上数学, 在创作这套书时,作者尽量克服传统数学教材的各种弊端,让大家学习时有兴趣、看得懂、有思考、更自信、用得着。 《数学要素:全彩图解 + 微课 + Python编程》打破数学板块的藩篱,将算数、代数、线性代数、几何、解析几何、概率统计、微积分、优化方法等板块有机结合在一起。从加、减、乘、除四则运算讲起,主要内容包括:第 1、2 章讲解向量和矩阵的基本运算;第 3 章讲解常用几何知识;第 4 章讲解代数知识;第 5、6 两章介绍坐标系;第 7、8、9 三章介绍解析几何;第 10 章到第 14 章都是围绕函数展开;第 15 章到第 19 章讲解微积分以及优化问题内容;第20、21 两章是概率统计入门;《数学要素:全彩图解 + 微课 + Python编程》最后四章以线性代数收尾。 《数学要素:全彩图解 + 微课 + Python编程》内容编排上突出“图解 + 编程 + 机器学习应用”。讲解一些特定数学工具时,《数学要素:全彩图解 + 微课 + Python编程》会穿插介绍其在数据科学和机器学习领域应用场景,让大家学以致用。 《数学要素:全彩图解 + 微课 + Python编程》虽标榜“从加减乘除到机器学习”,但是建议读者至少具备高中数学知识。如果读者正在学习或曾经学过大学数学 ( 微积分、线性代数、概率统计 ),就更容易读了。
"姜伟生 博士 FRM。勤奋的小镇做题家,热爱知识可视化和开源分享。自2022年8月开始,在GitHub上开源“鸢尾花书”学习资源,截至2023年4月,已经分享2000多页PDF、2000多幅矢量图、约1000个代码文件,全球读者数以万计。"
感谢 首先感谢大家的信任。 作者仅仅是在学习应用数据科学和机器学习算法时,多读了几本数学书,多做了一些思考和知识整理而已。知者不言,言者不知。知者不博,博者不知。由于作者水平有限,斗胆把自己所学所思与大家分享,作者权当无知者无畏。希望大家在B站视频下方和Github多提意见,让这套书成为作者和读者共同参与创作的作品。 特别感谢清华大学出版社的栾大成老师。从选题策划、内容创作到装帧设计,栾老师事无巨细、一路陪伴。每次与栾老师交流,都能感受到他对优质作品的追求、对知识分享的热情。 出来混总是要还的 曾几何时,考试是我们学习数学的唯一动力。考试是头悬梁的绳,是锥刺股的锥。我们中的大多数人从小到大为各种考试埋头题海,数学味同嚼蜡,甚至让人恨之入骨。 数学给我们带来了无尽的“折磨”。我们甚至恐惧数学,憎恨数学,恨不得一走出校门就把数学抛之脑后,老死不相往来。 可悲可笑的是,我们很多人可能会在毕业的五年或十年以后,因为工作需要,不得不重新学习微积分、线性代数、概率统计,悔恨当初没有学好数学,甚至迁怒于教材和老师。 这一切不能都怪数学,值得反思的是我们学习数学的方法和目的。 再给自己一个学数学的理由 为考试而学数学,是被逼无奈的举动。而为数学而数学,则又太过高尚而遥不可及。 相信对于绝大部分的我们来说,数学是工具、是谋生手段,而不是目的。我们主动学数学,是想用数学工具解决具体问题。 现在,这套书给大家一个“学数学、用数学”的全新动力—数据科学、机器学习。 数据科学和机器学习已经深度融合到我们生活的方方面面,而数学正是开启未来大门的钥匙...
第1章 万物皆数 7
1.1 数字和运算:人类思想的伟大飞跃 9
1.2 数字分类:从复数到自然数 11
1.3 加减:最基本的数学运算 15
1.4 向量:数字排成行、列 18
1.5 矩阵:数字排列成长方形 19
1.6 矩阵:一组列向量,或一组行向量 23
1.7 矩阵形状:每种形状都有特殊性质和用途 25
1.8 矩阵加减:形状相同,对应位置,批量加减 26
第2章 乘除 29
2.1 算术乘除:先乘除,后加减,括号内先算 31
2.2 向量乘法:标量乘法、向量内积、逐项积 34
2.3 矩阵乘法:最重要的线性代数运算规则 36
2.4 矩阵乘法第一视角 40
2.5 矩阵乘法第二视角 43
2.6 矩阵除法:计算逆矩阵 46
第3章 几何 49
3.1 几何缘起:根植大地,求索星空 51
3.2 点动成线,线动成面,面动成体 54
3.3 角度和弧度 60
3.4 勾股定理到三角函数 62
3.5 圆周率估算初赛:割圆术 64
第4章 代数 69
4.1 代数的前世今生:薪火相传 71
4.2 集合:确定的一堆东西 72
4.3 从代数式到函数 75
4.4 杨辉三角:代数和几何的完美合体 79
4.5 排列组合让二项式系数更具意义 82
4.6 杨辉三角隐藏的数字规律 85
4.7 方程组:求解鸡兔同笼问题 86
第5章 笛卡儿坐标系 91
5.1 笛卡儿:我思故我在 93
5.2 坐标系:代数可视化,几何参数化 9...