





定价:69元
印次:1-5
ISBN:9787302641087
出版日期:2023.08.01
印刷日期:2024.12.26
图书责编:夏毓彦
图书分类:零售
PyTorch是一个开源的机器学习框架,它提供了动态计算图的支持,让用户能够自定义和训练自己的神经网络,目前是机器学习领域中****的框架之一。本书基于PyTorch 2.0,详细介绍深度学习的基本理论、算法和应用案例,配套示例源代码、PPT课件。 《PyTorch?2.0深度学习从零开始学》共分15章,内容包括PyTorch概述、开发环境搭建、基于PyTorch的MNIST分类实战、深度学习理论基础、MNIST分类实战、数据处理与模型可视化、基于PyTorch卷积层的分类实战、PyTorch数据处理与模型可视化、实战ResNet卷积网络模型、有趣的Word Embedding、基于循环神经网络的中文情感分类实战、自然语言处理的编码器、站在巨人肩膀上的预训练模型BERT、自然语言处理的解码器、基于PyTorch的强化学习实战、基于MFCC的语音唤醒实战、基于PyTorch的人脸识别实战。 《PyTorch?2.0深度学习从零开始学》适合深度学习初学者、PyTorch初学者、PyTorch深度学习项目开发人员学习,也可作为高等院校或高职高专学校计算机技术、人工智能、智能科学与技术、数据科学与大数据技术等相关专业的教材。
"王晓华,高校计算机专业讲师,研究方向为云计算、大数据与人工智能。著有《Python机器学习与可视化分析实战》《谷歌JAX深度学习从零开始学》《Spark 3.0大数据分析与挖掘:基于机器学习》《TensorFlow深度学习应用实践》《OpenCV+TensorFlow深度学习与计算机视觉实战》《TensorFlow知识图谱实战》《TensorFlow人脸识别实战》《TensorFlow语音识别实战》《TensorFlow+Keras自然语言处理实战》《TensorFlow 2.0卷积神经网络实战》《Keras实战:基于TensorFlow2.2的深度学习实践》《TensorFlow 2.0深度学习从零开始学》《深度学习的数学原理与实现》。"
前 言 PyTorch是一个开源的机器学习框架,它提供了动态计算图的支持,让用户能够自定义和训练自己的神经网络。它由Facebook的研究团队开发,并于2017年首次发布,从那时起,PyTorch迅速成为机器学习领域最受欢迎的框架之一。 PyTorch在学术界和产业界都得到了广泛的应用,被用于完成各种任务,例如图像分类、自然语言处理、目标检测等。在2019年,PyTorch被Google和OpenAI等机构评选为机器学习框架的首选,这也进一步证明了PyTorch在机器学习领域的重要性。 关于本书 本书是一本以PyTorch 2.0为框架的深度学习实战图书,以通俗易懂的方式介绍深度学习的基础内容与理论,并以项目实战的形式详细介绍PyTorch框架的使用。本书从单个API的使用,到组合架构完成进阶的项目实战,全面介绍使用PyTorch 2.0进行深度学习项目实战的核心技术和涉及的相关知识,内容丰富而翔实。 同时,本书不仅仅是一本简单的项目实战性质的图书,本书在讲解和演示实例代码的过程中,对PyTorch 2.0的核心内容进行深入分析,重要内容均结合代码进行实战讲解,围绕深度学习的基本原理介绍大量案例,读者通过这些案例可以深入掌握深度学习和PyTorch 2.0的相关技术及其应用,并能提升使用深度学习框架进行真实的项目实战的能力。 本书特点 (1)重实践,讲原理。本书立足于深度学习,以实战为目的,以新版的PyTorch 2.0为基础框架,详细介绍深度学习基本原理以及示例项目的完整实现过程,并提供可运行的全套示例代码,帮助读者在直接使用代码的基础上掌握深度学习的原理...
第1章 PyTorch 2.0—一个新的开始 1
1.1 燎原之势的人工智能 1
1.1.1 从无到有的人工智能 1
1.1.2 深度学习与人工智能 2
1.1.3 应用深度学习解决实际问题 2
1.1.4 深度学习技术的优势和挑战 3
1.2 为什么选择PyTorch 2.0 4
1.2.1 PyTorch的前世今生 4
1.2.2 更快、更优、更具编译支持—PyTorch 2.0更好的未来 4
1.2.3 PyTorch 2.0学习路径—从零基础到项目实战 5
1.3 本章小结 6
第2章 Hello PyTorch 2.0—深度学习环境搭建 7
2.1 安装Python 7
2.1.1 Miniconda的下载与安装 7
2.1.2 PyCharm的下载与安装 10
2.1.3 Python代码小练习:计算Softmax函数 13
2.2 安装PyTorch 2.0 14
2.2.1 Nvidia 10/20/30/40系列显卡选择的GPU版本 15
2.2.2 PyTorch 2.0 GPU Nvidia运行库的安装—以CUDA 11.7+cuDNN 8.2.0为例 15
2.2.3 PyTorch 2.0小练习:Hello PyTorch 18
2.3 实战:基于PyTorch 2.0的图像去噪 18
2.3.1 MNIST数据集的准备 18
2.3.2 MNIST数据集的特征和标签介绍 20
2.3.3 模型的准备和介绍 21
2.3.4 模型的损失函数...
帮助读者用最短的时间掌握PyTorch 2.0深度学习的编程技巧及实战应用
实战案例包括:中文情感分类、拼音汉字转化、中文文本分类、拼音汉字翻译、强化学习、语音唤醒、人脸识别
配套示例源码、PPT课件、作者答疑服务"