图书目录

Contents

II

Artificial Intelligence

Introduction

1.1   What Is AI?

1.2   The Foundations of Artificial Intelligence

1.3   The History of Artificial Intelligence

1.4   The State of the Art

Intelligent Agents

2.1   Agents and Environments

2.2   Good Behavior: The Concept of Rationality

2.3   The Nature of Environments

2.4   The Structure of Agents

2.5   Summary, Bibliographical and Historical Notes

Problem-solving

Solving Problems by Searching

3.1   Problem-Solving Agents

3.2   Example Problems

3.3   Searching for Solutions

3.4   Uninformed Search Strategies

3.5   Informed (Heuristic) Search Strategies

3.6   Heuristic Functions

3.7   Summary, Bibliographical and Historical Notes

Beyond Classical Search

Exercises

Exercises

Exercises

4.1   Local Search Algorithms and Optimization Problems

4.2   Local Search in Continuous Spaces

4.3   Searching with Nondeterministic Actions

4.4   Searching with Partial Observations

4.5   Online Search Agents and Unknown Environments

4.6   Summary, Bibliographical and Historical Notes

Adversarial Search

5.1   Games

5.2   Optimal Decisions in Games

5.3   Alpha-Beta Pruning

5.4   Imperfect Real-Time Decisions

5.5   Stochastic Games

Xlll

Exercises

Partially Observable Games

State-of-the-Art Game Programs

Alternative Approaches

Summary, Bibliographical and Historical Notes

Constraint Satisfaction Problems

6.1   Defining Constraint Satisfaction Problems

6.2   Constraint Propagation: Inference in CSPs

6.3   Backtracking Search for CSPs

6.4   Local Search for CSPs

6.5   The Structure of Problems

6.6   Summary, Bibliographical and Historical Notes

III  Knowledge, reasoning, and planning

Logical Agents

7.1   Knowledge-Based Agents

7.2   The Wumpus World

7.3   Logic

7.4   Propositional Logic: A Very Simple Logic

7.5   Propositional Theorem Proving

7.6   Effective Propositional Model Checking

7.7   Agents Based on Propositional Logic

7.8   Summary, Bibliographical and Historical Notes

First-Order Logic

8.1   Representation Revisited

8.2   Syntax and Semantics of First Order Logic

8.3   Using First-Order Logic

8.4   Knowledge Engineering in First-Order Logic

8.5   Summary, Bibliographical and Historical Notes

Inference in First-Order Logic

9.2   Unification and Lifting

9.3   Forward Chaining

9.4   Backward Chaining

9.5   Resolution

9.6   Summary, Bibliographical and Historical Notes

10 Classical Planning

10.1  Definition of Classical Planning

10.2  Algorithms for Planning as State-space Search

10.3  Planning Graphs

Exercises

Contents

Other Classical Planning Approaches

Analysis of Planning Approaches

Summary, Bibliographical and Historical Notes

11 Planning and Acting in the Real World

11.1  Time. Schedules. and Resources

11.2  Hierarchical Planning

Exerc]ses

11.3  Planning and Acting in Nondeterministic Domains

11.4  Multiagent Planning

11.5  Summary, Bibliographical and Historical Notes

12 Knowledge Representation

12.1  Ontological Engineering

12.2  Categories and Objects

12.3  Events

12.4  Mental Events and Mental Objects

12.5  Reasoning Systems for Categories

12.6  Reasoning with Default Information

12.7  The Intemet Shopping World

12.8  Summary, Bibliographical and Historical Notes

IV  Uncertain knowledge and reasoning

13

14

Quantifying Uncertainty

Acting under Uncertainty

Basic Probability Notation

Inference Using Full Joint Distributions

Independence

Bayes' Rule and Its Use

The Wumpus World Revisited

Summary, Bibliographical and Historical Notes

ab

stic Reasoning

Exercises

Representing Knowledge in an Uncertain Domain

The Semantics of Bayesian Networks

Efficient Representation of Conditional Distributions

Exact Inference in Bayesian Networks

Approximate Inference in Bayesian Networks

Relational and First-Order Probability Models

Other Approaches to Uncertain Reasoning

Summary, Bibliographical and Historical Notes

15 Probabilistic Reasoning over Time

15.1  Time and Uncertainty

Exerc]ses

XV

Inference in Temporal Models

Hidden Markov Models

Kalman Filters

Dy

   namlc Bayesian Networks

Keeping Track of Many Objects

Summary, Bibliographical and Historical Notes

16 Making Simple Decisions

16.1  Combining Beliefs and Desires under

16.2  The Basis of Utility Theory

16.3  Utility Functions

16.4  Multiattribute Utility Functions

16.5  Decision Networks

16.6  The Value of Information

16.7  Decision-Theoretic Expert Systems

Exercises

Uncertainty

16.8  Summary, Bibliographical and Historical Notes

17 Making Complex Decisions

17.1  Sequential Decision Problems

17.2  Value Iteration

17.3  Policy Iteration

17.4  Partially Observable MDPs

17.5  Decisions with Multiple Agents

17.6  Mechanism Design

Game Theory

17.7  Summary, Bibliographical and Historical Notes

Learning

18 Learning from Examples

18.1  Forms of Learning

18.2  Supervised Learning

18.3  Learning Decision Trees

18.4  Evaluating and Choosing the Best Hypothesis

18.5  The Theory of Learning

Exercises

Exercises

18.6  Regression and Classification with Linear Models

18.7  Artificial Neural Networks

18.8  Nonparametric Models

18.9  Support Vector Machines

18.10 Ensemble Learning

18.11 Practical Machine Learning

18.12 Summary, Bibliographical and Historical Notes

19 Knowledge in Learning

19.1  A Logical Formulation of Learning

Exercises

Contents

Knowledge in Learning

Explanation-Based Learning

Learning Using Relevance Information

Inductive Logic Programming

Summary, Bibliographical and Historical Notes

20 Learning Probabilistic Models

20.1  Statistical Learning

20.2  Learning with Complete Data

Exercises

20.3  Learning with Hidden Variables: The EM Algorithm

20.4  Summary, Bibliographical and Historical Notes, Exercises

21 Reinforcement Learning

Communicating, perceiving, and acting

22 Natural Language Processing

22.1  Language Models

22.2  Text Classification

22.3  Information Retrieval

22.4  Information Extraction

22.5  Summary, Bibliographical and Historical Notes

23 Natural Language for Communication

23.1  Phrase Structure Grammars

23.2  Syntactic Analysis (Parsing)

Exercises

Exercises

23.3  Augmented Grammars and Semantic Interpretation

23.4  Machine Translation

23.5  Speech Recognition

23.6  Summary, Bibliographical and Historical Notes

24 Perception

24.1  Image Formation

24.2  Early Image-Processing Operations

24.3  Object Recognition by Appearance

24.4  Reconstructing the 3D World

24.5  Object Recognition from Structural Information

Exercises

XVll

XVlll

Using Vision

Summary, Bibliographical and Historical Notes

25 Robotics

25.1  Introduction

25.2  Robot Hardware

25.3  Robotic Perception

25.4  Planning to Move

25.5  Planning Uncertain Movements

25.6  Moving

25.7  Robotic Software Architectures

25.8  Application Domains

25.9  Summary, Bibliographical and Historical Notes

Conclusions

26 Philosophical Foundations

26.1  Weak AI: Can Machines Act Intelligently?

26.2  Strong AI: Can Machines Really Think

Exercises

Exercises

26.3  The Ethics and Risks of Developing Artificial Intelligence

26.4  Summary, Bibliographical and Historical Notes

27 AI: The Present and Future

27.1  Agent Components

27.2  Agent Architectures

27.3  Are We Going in the Right Direction?

27.4  What If AI Does Succeed?

A Mathematical background

A. 1   Complexity Analysis and O() Notation

A.2  Vectors, Matrices, and Linear Algebra

A.3  Probability Distributions

B Notes on Languages and Algorithms

B. 1   Defining Languages with B ackus-Naur Form

B.2   Describing Algorithms with Pseudocode

B.3   Online Help

Bibliography