生物启发式计算是建立在仿生学、生态系统分析、计算机应用技术等学科基础上的一种优化计算方法,是人工智能优化算法发展的重要分支。由于此类方法具备问题描述简单和优化性能高效的的特点,被广泛应用于各类复杂优化问题的求解。为满足研究相关优化方法的科研工作者及广大普通读者的需求,作者编写了《智能优化算法——基于生物行为模型的案例与实现》。本书从建模机理、算法设计和工程应用层面对典型的生物觅食行为启发式计算方法进行研究,帮助读者形成关于生物启发式计算的知识体系。本书系统论述了智能优化算法的理论、技术及应用,具体内容包括:
基于层次型信息交流机制的多蜂群协同进化;
基于生命周期的菌群觅食自适应优化;
面向聚类分析的MCABC-FCM算法研究与应用;
基于LCBFA的多阈值分割算法及其在彩色图像处理中的应用。