前 言
在人工智能的浩瀚星空中,深度学习犹如一颗耀眼的明星,引领着计算机视觉技术的发展。在这个充满变革与机遇的时代,希望本书能够带领读者领略深度学习应用于计算视觉领域的魅力,并掌握使用PyTorch进行计算视觉应用实战的技巧。
本书关注的是计算机视觉领域的重要分支—计算视觉,它涉及图像分类、目标检测、图像分割、图像生成等一系列核心问题。通过本书的学习,读者将了解深度学习和计算视觉的基本概念,掌握使用PyTorch进行图像处理、特征提取、模型训练和推理实践的技能。同时,本书还将通过完整的项目实战,让读者将所学知识应用到实际场景中,培养解决实际问题的能力。
本书构思
本书以实战为核心,以实际项目为导向。在阐述理论的基础上,带领读者踏上深度学习与计算机图像处理的探索之旅。本书不仅涵盖了基础知识,更有最新的研究成果和模型架构。通过阅读本书,读者将紧跟学术前沿,提升自身水平。
相比其他同类书籍,本书更强调理论的融会贯通。书中的所有知识点都不是孤立的,而是相互关联,构建成一个完整的知识体系。读者可根据章节顺序,由浅入深地逐步掌握各个知识点,最终形成自己的深度学习框架。
本书以解决图像处理实战项目为出发点,结合PyTorch 2.0深度学习框架进行深入浅出的讲解和演示。以多角度、多方面的方式手把手地教会读者编写代码,同时结合实际案例深入剖析其中的设计模式和模型架构。
本书特点
本书致力于引领读者掌握深度学习与PyTorch框架在计算机视觉处理领域的应用,不仅关注理论,更注重实践,提供一站式的实战指南。本书的突出优势体现在以下几个方面:
?系统性与实践性:本书从基础知识开始,逐步引导读者深入到实际项目中,对于可能遇到的问题,给出相应的解决方案。每个章节都以实际案例为依托,详细阐述相关知识点,让读者在实践中掌握深度学习和图像处理的核心技能。
?PyTorch与图像处理的完美结合:本书不仅介绍了PyTorch框架的基础知识和使用方法,还结合图像处理的实际应用进行深入探讨,以便读者更好地理解深度学习在计算机视觉领域的应用,并能够迅速将所学知识应用于实际项目中。
?多领域应用案例:本书通过多种领域的案例,展示深度学习在图像处理方面的广泛应用。这些案例涵盖图像识别、场景分割、图像生成以及目标检测等多个领域,使读者可以更好地了解深度学习在图像处理领域的应用前景。
?作者实战经验丰富:本书作者是深度学习领域的专家,具有深厚的学术背景和丰富的实践经验。作者在撰写本书的过程中以实际项目中遇到的问题为导向,注重知识体系的完整性和实用性,使本书更具参考价值。
资源下载
本书配套示例源代码、PPT课件,需要用微信扫描下面的二维码获取。如果阅读中发现问题或疑问,请发送邮件至booksaga@163.com,邮件主题写“PyTorch深度学习与计算机视觉实践”。
适合的读者
本书既适合深度学习初学者、PyTorch初学者、PyTorch计算机视觉应用开发人员阅读,也可作为高等院校或高职高专计算机技术、人工智能、智能科学与技术、数据科学与大数据技术等相关专业的教材。
致 谢
笔者在写作本书的过程中得到了家人和朋友的大力支持,在此表示感谢。本书的顺利出版,离不开清华大学出版社的编辑们的辛勤工作,在此表示感谢。
笔 者
2024年5月