





作者:龙海侠、李满枝、王洪涛、付海艳
定价:98元
印次:1-1
ISBN:9787302468066
出版日期:2017.05.01
印刷日期:2017.05.02
图书责编:王定
图书分类:零售
本书全面系统地介绍了进化算法在生物多序列比对中的应用,根据内容的分类,分为“多序列比对基础篇”“多序列比对模拟篇”和“多序列比对参数篇”三个模块。首先介绍生物多序列比对的基础知识,包括多序列比对的基本概念、原理、方法、常用数据库、常用工具和应用等内容,并介绍进化算法和最优化理论的基础知识,以及遗传算法、粒子群优化算法和量子粒子群优化算法的优化过程及收敛性分析,为进行多序列比对的模拟提供理论基础;然后详细介绍各进化算法模拟多序列比对的过程与结果;最后对于多序列比对最重要的目标函数参数进行建模与分析。本书具有系统性强、可读性强、可操作性强等特点。
作 者 简 介龙海侠 1980年生,2007年获江南大学计算机软件与理论硕士学位,2010年获江南大学轻工信息技术与工程博士学位,现就职于海南师范大学信息科学技术学院,副教授。研究方向:群体智能算法、进化算法、生物信息。硕士期间从事群体智能算法和进化算法的研究及其在聚类、图像分割上的应用研究;博士期间从事生物信息的研究,重点研究多序列比对和培养基的优化;近5年从事深度学习算法和生物信息的研究。已出版教材1部、专著1部,发表论文30余篇,主持省级课题2项,作为第一完成人获得省级奖励2项。李满枝 1979年生,2004年6月获西北工业大学计算数学专业理学硕士学位,现就职于海南师范大学数学与统计学院,副教授。主要研究方向:生物信息学、计算机数值模拟、算法构造等。硕士期间从事基于蒙特卡罗方法的计算机模拟,近5年从事生物信息中的蛋白质功能预测研究。已在国内外核心期刊及学术会议上发表多篇论文,出版专著1部,并作为主要成员参与省级和国家级自然科学项目多项,现主持海南省自然科学基金“生物多序列比对的遗传算法模拟及改进”。 王洪涛 1978年生,2008年6月获海南师范大学应用数学专业理学硕士学位,现就职于海南师范大学数学与统计学院,副教授。主要研究方向:计算机数值模拟、算法构造、数学建模等。在国内外核心期刊及学术会议上发表多篇论文,出版专著1部,并作为主要成员参与海南省自然科学基金项目多项,目前是海南省自然科学基金“生物多序列比对的遗传算法模拟及改进”的第二参与人。付海艳 1978年生,2002年获山东大学人工智能与模式识别硕士学位,2009年获山东大学系统理论博士学位,现就职于海南师范大学信息科学技术学院,教授。研究方向:评价理论与方法、决策理论与方法、不确定信息处理。硕士期间从事基于模糊集理论的评价方法和决策方法的研究,博士期间从事基于粗糙集理论和模糊集理论的不确定信息处理,近5年从事数据挖掘算法的研究。已出版教材2部、专著1部,发表论文30余篇,主持国家级课题1项、省级课题6项,作为第一完成人获得省级奖励2项。
前 言 随着人类基因组计划的实施和科技的发展,生物学数据呈爆炸式增长,这些海量的生物学数据必须通过生物信息学手段进行收集、分析和整理后,才能成为有用的信息。而如何有效分析和处理这些大型序列数据(即序列分析)成为生物信息学的首要任务。序列比对是生物序列分析的主要方法,也是生物信息学中挑战性的问题之一。序列比对在序列装配、序列注释、基因和蛋白质的结构和功能预测以及系统发育和进化分析等方面均有广泛应用,因此对它的研究一直以来都是热点。 进化算法是一类借鉴生物界自然选择和自然遗传机制的随机搜索算法,主要包括遗传算法(genetic algorithm,GA)、遗传规划(genetic programming,GP)、进化策略(evolutionary strategies,ES)、进化规划(evolutionary programming,EP)、粒子群优化(particle swarm optimization,PSO)算法以及近年出现的量子粒子群优化(quantum- behaved particle swarm optimization,QPSO)算法,它们通过一系列的进化算子和进化方程,寻找问题的最优解。本书把上述的进化算法及其改进的进化算法,结合数学模型,用于解决生物多序列比对问题。 全书正文各章节结构如下图所示,共分为“多序列比对基础篇”“多序列比对模拟篇”和“多序列比对参数篇”三个模块。 “多序列比对基础篇”(第1章~第3章)介绍生物多序列比对的基础知识,包括多序列比对的基本概念、原理、方法、常用数据库、常用工具和应用等内容,并介绍进化算法和最优...
第1章 生物多序列比对 3
1.1 生物信息学 3
1.1.1 生物信息学的起源 3
1.1.2 生物信息学的概念 4
1.1.3 生物信息学的主要研究内容 4
1.2 序列比对的概念及其发展历史 8
1.2.1 序列比对的提出与基本概念 8
1.2.2 序列比对的目的和意义 8
1.2.3 国内外研究现状 10
1.2.4 多序列比对面临的挑战 10
1.3 多序列比对的基本原理 11
1.3.1 多序列比对的相关概念 11
1.3.2 序列比对的分类 12
1.3.3 多序列比对的数学定义 13
1.3.4 多序列比对的打分方法 14
1.4 多序列比对方法 22
1.4.1 比对方法 22
1.4.2 多序列比对算法 23
1.5 多序列比对常用数据库 33
1.5.1 综合性数据库 34
1.5.2 基准数据库 36
1.6 多序列比对常用工具 40
1.6.1 搜索工具 40
1.6.2 常用的在线多序列比对工具 42
1.7 多序列比对的应用 45
1.8 其他说明 46
1.8.1 多序列比对算法存在的问题 46
1.8.2 多序列比对算法的运算指标 47
1.8.3 多序列比对算法的展望 48
1.9 本章小结 48
参考文献 49
第2章 进化算法和最优化理论 53
2.1 进化算法 53
2.1.1 遗传算法 53
2.1.2 遗传规划 54
2.1.3 进化策略 56
2.1.4 进化规...